: تأثیر تیمار فراصوت بر خواص فیزیکوشیمیایی، رئولوژیکی و ساختاری نشاسته‌های استخراج شده از حبوبات مختلف

نویسندگان
1 کارشناسی ارشد دانشجوی کارشناسی ارشد، گروه آموزشی علوم و مهندسی صنایع غذایی گرایش فناوری، دانشگاه فردوسی مشهد، مشهد، ایران
2 کارشناسی ارشد دانشجوی کارشناسی ارشد، گروه آموزشی علوم و مهندسی صنایع غذایی گرایش زیست فناوری، دانشگاه فردوسی مشهد، مشهد، ایران
3 استاد، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
نشاسته فراوان‌ترین کربوهیدرات موجود در دانه حبوبات است. از طرف دیگر نشاسته‌ حبوبات طبیعی به دلیل ماهیت غیر واکنشی و نامحلول بودن در آب سرد، کاربرد محدودی در صنایع غذایی دارد. نشاسته حبوبات طبیعی را می‌توان با روش‌های شیمیایی، فیزیکی و آنزیمی اصلاح کرد. نشاسته حبوبات اصلاح‌شده به دلیل خواص عملکردی بهبودیافته در صنایع غذایی اهمیت پیدا کردند. فراصوت یکی از روش‌های فیزیکی اصلاح نشاسته است که در این مقاله موردبررسی قرار می‌گیرد. همچنین فراصوت به‌طور فزاینده‌ای برای اصلاح فیزیکوشیمیایی سیستم‌های غذایی به‌عنوان یک فناوری سبز استفاده می‌شود. هدف از این مطالعه بررسی اثر تیمار فراصوت (حمام-پروب) بر ویژگی‌های عملکردی، رئولوژیکی، حرارتی، مورفولوژی و ساختار کریستالی نمونه‌های نشاسته اصلاح‌شده می‌باشد. تغییر در خواص نشاسته اصلاح‌شده فراصوت عمدتاً به دلیل دپلیمریزاسیون زنجیره‌های آمیلوز و آمیلوپکتین است. پس از تیمار فراصوت، وزن مولکولی، ویسکوزیته و بلورینگی کاهش می‌یابد؛ بنابراین می‌توان نتیجه گرفت که فراصوت به‌عنوان فناوری جایگزین برای اصلاح خواص نشاسته حبوبات است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of ultrasound treatment on the physicochemical, rheological and structural properties of starches extracted from different legumes

نویسندگان English

Mohammadkazem Heydarian 1
Alireza Heydarian 2
Seyed Ali Mortazavi 3
1 MSc Master's student, Educational Department of Science and Technology Food Industry Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 MSc Master's student, Education Department of Science and Biotechnology Food Industry Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
3 Prof, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده English

Starch is the most abundant carbohydrate in legumes. On the other hand, due to its non-reactive nature and insolubility in cold water, natural leguminous starch has limited use in the food industry. Natural legume starch can be modified by chemical, physical, and enzymatic methods. Modified legume starches have gained importance in the food industry due to their improved functional properties. Ultrasound is one of the physical methods of starch modification examined in this article. Also, ultrasound is increasingly used as a green technology for the physicochemical modification of food systems. This study aims to investigate the effect of ultrasonic treatment (bath-probe) on the functional, rheological, thermal, morphological, and crystal structure characteristics of modified starch samples. The change in the properties of ultrasonically modified starch is mainly due to the depolymerization of amylose and amylopectin chains. After ultrasound treatment, molecular weight, viscosity, and crystallinity decrease; Therefore, it can be concluded that ultrasound is an alternative technology for modifying the properties of leguminous starch.

کلیدواژه‌ها English

Legume starch
Ultrasound
Modification
cavitation
[1[Zhu, F. 2015. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. J. Trends Food Sci Technol, 43(1): 1-17.
[2]Feng, H., Barbosa-Cánovas, G.V., and Weiss, J. eds. 2011. Ultrasound technologies for food and bioprocessing (Vol. 1, p. 599). New York: Springer.
[3]Park, S., and Kim, Y.R. 2021. Clean label starch: production, physicochemical characteristics, and industrial applications. J. Food Sci. Biotechnol, 30: 1-17.
[4]Mallakpour, S. 2018. Ultrasonic-assisted fabrication of starch/MWCNT-glucose nanocomposites for drug delivery. J. Ultrason. Sonochem, 40: 402-409.
[5]Ogutu, F. O., Mu, T. H., Elahi, R., Zhang, M., and Sun, H. N. 2015. Ultrasonic modification of selected polysaccharides-review. J. Food Process. Technol, 6(05): 446.
[6]Patist, A., and Bates, D. 2008. Ultrasonic innovations in the food industry: From the laboratory to commercial production. J. IFSET, 9(2): 147-154.
[7]Kentish, S., and Feng, H. 2014. Applications of power ultrasound in food processing. J. Annu. rev. food sci, 5: 263-284.
[8]Jambrak, A. R., Herceg, Z., Šubarić, D., Babić, J., Brnčić, M., Brnčić, S. R., Bosiljkov, T., Čvek, D., Tripalo, B., and Gelo, J. 2010. Ultrasound effect on physical properties of corn starch. J. Carbohydr. Polym, 79(1): 91-100.
[9]HerCeg, I. L., Jambrak, A. R., ŠubArIć, D., Brnčić, M., Brnčić, S. R., Badanjak, M., Tripalo, B., Ježek, D., Novotni, D., and Herceg, Z. 2010. Texture and pasting properties of ultrasonically treated corn starch. J. Czech.Food Sci, 28(2): 83-93.
[10]Hoover, R. 2011. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. J. Carbohydr. Polym, 45(3): 253-267.
[11]Zhu, F., and Wang, S. 2014. Physicochemical properties, molecular structure, and uses of sweetpotato starch. J. Trends Food Sci Technol, 36(2): 68-78.
[12]Zhu, F. 2017. Structures, physicochemical properties, and applications of amaranth starch. J. Crit Rev Food Sci Nutr, 57(2): 313-325.
[13]Boukhalfa, F., Kadri, N., Bouchemel, S., Ait Cheikh, S., Chebout, I., and Madani, K. 2018. Chemically modified starch and utilization in food stuffs. J. Mediterranean Journal of Nutrition and Metabolism, 11: 37-50.
[14]Liu, H., Ramsden, L., and H, Corke. 1999. Physical properties and enzymatic digestibility of hydroxypropylated ae, wx, and normal maize starch. J. Carbohydr. Polym, 40(3): 175-182.
[15]Mason, W.R. 2009. Starch use in foods. In Starch (pp. 745-795). Academic Press.
[16]Glittenberg, D. 2012. Starch-based biopolymers in paper, corrugating, and other industrial applications. 165-193.
[17]Majzoobi, M., and Farahnaky, A. 2021. Granular cold-water swelling starch; properties, preparation and applications, a review. J. Food Hydrocoll, 111: 106393.
[18]Laovachirasuwan, P., Peerapattana, J., Srijesdaruk, V., Chitropas, P., and Otsuka, M. 2010. The physicochemical properties of a spray dried glutinous rice starch biopolymer. J. Colloids Surf. B, 78(1): 30-35.
[19]Jeong, D., Han, J.A., Liu, Q., and Chung, H.J. 2019. Effect of processing, storage, and modification on in vitro starch digestion characteristics of food legumes: A review. J. Food Hydrocoll, 90: 367-376.
[20]Chibbar, R.N., Ambigaipalan, P., and Hoover, R. 2010. Molecular diversity in pulse seed starch and complex carbohydrates and its role in human nutrition and health. J. Cereal Chem, 87(4): 342-352.
[21]Kossmann, J., and Lloyd, J. 2000. Understanding and influencing starch biochemistry. J. CRC Crit Rev Plant Sci, 19(3): 171-226.
[22]Li, L., Yuan, T.Z., Setia, R., Raja, R.B., Zhang, B., and Ai, Y. 2019. Characteristics of pea, lentil and faba bean starches isolated from air-classified flours in comparison with commercial starches. J. Food Chem, 276: 599-607.
[23]Keskin, S.O., Ali, T.M., Ahmed, J., Shaikh, M., Siddiq, M., and Uebersax, M.A. 2022. Physico‐chemical and functional properties of legume protein, starch, and dietary fiber—A review. J. Legume Science, 4(1): 117.
[24]Hoover, R., and Sosulski, F.W. 1991. Composition, structure, functionality, and chemical modification of legume starches: a review. J. Can. J. Physiol. Pharmacol, 69(1): 79-92.
[25]Hoover, R., Hughes, T., Chung, H.J., and Liu, Q. 2010. Composition, molecular structure, properties, and modification of pulse starches: A review. J. Food Res. Int, 43(2): 399-413.
[26]Bemiller, J.N. 1997. Starch modification: challenges and prospects. J. Starch‐Stärke, 49(4): 127-131.
[27]Tharanathan, R.N. 2005. Starch—value addition by modification. J. Crit Rev Food Sci Nutr, 45(5): 371-384.
[28]Joshi, M., Aldred, P., McKnight, S., Panozzo, J.F., Kasapis, S., Adhikari, R., and Adhikari, B. 2013. Physicochemical and functional characteristics of lentil starch. J. Carbohydr. Polym, 92(2): 1484-1496.
[29]Chen, X., Zhang, Z., Ji, N., Li, M., Wang, Y., Xiong, L., and Sun, Q. 2022. The effect of ethanol solution annealing on the physicochemical properties of pea and potato starches. J. Food Hydrocoll, 125: 107428.
[30]Hu, A., Li, Y., and Zheng, J. 2019. Dual-frequency ultrasonic effect on the structure and properties of starch with different size. J. Lwt, 106: 254-262.
[31]Thirumdas, R., Kadam, D., and Annapure, U.S. 2017. Cold plasma: An alternative technology for the starch modification. J. Food Biophys, 12: 129-139.
[32]Neelam, K., Vijay, S., and Lalit, S. 2012. Various techniques for the modification of starch and the applications of its derivatives. J. IRJP, 3(5): 25-31.
[33]Hoover, R., Hannouz, D., and Sosulski, F.W. 1988. Effects of hydroxypropylation on themal properties, starch digestibility and freeze‐thaw stability of field pea (pisum sativum cv trapper) starch. J. Starch‐Stärke, 40(10): 383-387.
[34]Huang, J., Schols, H.A., Jin, Z., Sulmann, E., and Voragen, A.G. 2007. Characterization of differently sized granule fractions of yellow pea, cowpea and chickpea starches after modification with acetic anhydride and vinyl acetate. J. Carbohydr. Polym, 67(1): 11-20.
[35]Ashogbon, A.O., and Akintayo, E.T. 2014. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. J. Starch‐Stärke, 66(1-2): 41-57.
[36]Guleria, P., and Yadav, B.S. 2022. Effect of chemical treatments on the functional, morphological and rheological properties of starch isolated from pigeon pea (Cajanus cajan). J. CRFS, 5: 1750-1759.
[37]Chaiwat, W., Wongsagonsup, R., Tangpanichyanon, N., Jariyaporn, T., Deeyai, P., Suphantharika, M., Fuongfuchat, A., Nisoa, M., and Dangtip, S. 2016. Argon plasma treatment of tapioca starch using a semi-continuous downer reactor. J. Food Bioproc Tech, 9: 1125-1134.
[38]Gu, Z., Chen, B., and Tian, Y. 2021. Highly branched corn starch: Preparation, encapsulation, and release of ascorbic acid. J. Food Chem, 343: 128485.
[39]Chiu, C.W., and Solarek, D. 2009. Modification of starches. J. Food Sci. Technol, 629-655.
[40]Hansen, M.R., Blennow, A., Pedersen, S., Nørgaard, L., and Engelsen, S.B. 2008. Gel texture and chain structure of amylomaltase-modified starches compared to gelatin. J. Food Hydrocoll, 22(8): 1551-1566.
[41]Ao, Z., Simsek, S., Zhang, G., Venkatachalam, M., Reuhs, B.L., and Hamaker, B.R. 2007. Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. J. Agric. Food Chem, 55(11): 4540-4547.
[42]Kaur, B., Ariffin, F., Bhat, R., and Karim, A.A. 2012. Progress in starch modification in the last decade. J. Food Hydrocoll, 26(2): 398-404.
[43]Gulu, N.B., Jideani, V.A., and Jacobs, A. 2019. Functional characteristics of Bambara groundnut starch-catechin complex formed using cyclodextrins as initiators. J. Heliyon, 5(4): e01562.
[44]Guo, Z., Zeng, S., Lu, X., Zhou, M., Zheng, M., and Zheng, B. 2015. Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure. J. Food Chem, 186: 223-230.
[45]Han, Z., Zeng, X.A., Zhang, B.S., and Yu, S.J. 2009. Effects of pulsed electric fields (PEF) treatment on the properties of corn starch. J. Food Eng, 93(3): 318-323.
[46]Bashir, K., and Aggarwal, M. 2017. Physicochemical, thermal and functional properties of gamma irradiated chickpea starch. J. Int. J. Biol. Macromol, 97: 426-433.
[47]Luo, Z., Fu, X., He, X., Luo, F., Gao, Q., and Yu, S. 2008. Effect of ultrasonic treatment on the physicochemical properties of maize starches differing in amylose content. J. Starch‐Stärke, 60(11): 646-653.
[48]Kaur, H., and Gill, B.S. 2019. Effect of high-intensity ultrasound treatment on nutritional, rheological and structural properties of starches obtained from different cereals. J. Int. J. Biol. Macromol, 126: 367-375.
[49]Du, M., Cao, T., Yu, M., Zhang, C., and Xu, W. 2023. Effect of heat-moisture treatment on physicochemical properties of chickpea starch. J. Food Sci. Technol, 43.
[50]Din, Z.D., Xiong, H., and Fei, P. 2017. Physical and chemical modification of starches: A review. J. Crit Rev Food Sci Nutr, 57(12): 2691-2705.
[51]Chan, H.T., Bhat, R., and Karim, A.A. 2010. Effects of sodium dodecyl sulphate and sonication treatment on physicochemical properties of starch. J. Food Chem, 120(3): 703-709.
[52]Zuo, Y.Y.J., Hébraud, P., Hemar, Y., and Ashokkumar, M. 2012. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy. J. Ultrason Sonochem, 19(3): 421-426.
[53]Czechowska-Biskup, R., Rokita, B., Lotfy, S., Ulanski, P., and Rosiak, J.M. 2005. Degradation of chitosan and starch by 360-kHz ultrasound. J. Carbohydr. Polym, 60(2): 175-184.
[54]Riesz, P., and Kondo, T. 1992. Free radical formation induced by ultrasound and its biological implications. J. Free Radic. Biol. Med, 13(3): 247-270.
[55]Szent-Györgyi, A. 1933. Chemical and biological effects of ultra-sonic radiation. J.Nature, 131(3304): 278-278.
[56]Peat, S. 1952. Evidence of multiple branching in waxy maize starch. J. chem, Soc.
[57]Bertoft, E., Piyachomkwan, K., Chatakanonda, P., and Sriroth, K. 2008. Internal unit chain composition in amylopectins. J. Carbohydr. Polym, 74(3): 527-543.
[58]Srichuwong, S., and Jane, J.I. 2007. Physicochemical properties of starch affected by molecular composition and structures: a review. J. Food Sci. Biotechnol, 16(5): 663-674.
[59]Su, C., Saleh, A.S., Zhang, B., Zhao, K., Ge, X., Zhang, Q., and Li, W. 2020. Changes in structural, physicochemical, and digestive properties of normal and waxy wheat starch during repeated and continuous annealing. J. Carbohydr. Polym, 247: 116675.
[60]Hanashiro, I., Abe, J.I., and Hizukuri, S. 1996. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. J. Carbohydr. Res, 283: 151-159.
[61]Zhu, F., Corke, H., and Bertoft, E. 2011. Amylopectin internal molecular structure in relation to physical properties of sweetpotato starch. J. Carbohydr. Polym, 84(3): 907-918.
[62]Biliaderis, C.G., Maurice, T.J., and Vose, J.R. 1980. Starch gelatinization phenomena studied by differential scanning calorimetry. J. Food Sci, 45(6): 1669-1674.
[63]Zheng, J., Li, Q., Hu, A., Yang, L., Lu, J., Zhang, X., and Lin, Q. 2013. Dual‐frequency ultrasound effect on structure and properties of sweet potato starch. J. Starch‐Stärke, 65(7‐8): 621-627.
[64]Sujka, M., and Jamroz, J. 2013. Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. J. Food Hydrocoll, 31(2): 413-419.
[65]Li, C., Liu, W., Gu, Z., Fang, D., Hong, Y., Cheng, L., and Li, Z. 2017. Ultrasonic pretreatment improves the high‐temperature liquefaction of corn starch at high concentrations. J. Starch‐Stärke, 69(3-4): 1600002.
[66]Iida, Y., Tuziuti, T., Yasui, K., Towata, A., and Kozuka, T. 2008. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. J. IFSET, 9(2): 140-146.
[67]Zuo, J.Y., Knoerzer, K., Mawson, R., Kentish, S., and Ashokkumar, M. 2009. The pasting properties of sonicated waxy rice starch suspensions. J. Ultrason Sonochem, 16(4): 462-468.
[68]Carmona‐García, R., Bello‐Pérez, L.A., Aguirre‐Cruz, A., Aparicio‐Saguilán, A., Hernández‐Torres, J., and Alvarez‐Ramirez, J. 2016. Effect of ultrasonic treatment on the morphological, physicochemical, functional, and rheological properties of starches with different granule size. J. Starch‐Stärke, 68(9-10): 972-979.
[69]Bitik, A., Sumnu, G., and Oztop, M. 2019. Physicochemical and structural characterization of microfluidized and sonicated legume starches. J. Food Bioproc Tech, 12: 1144-1156.
[70]Grgić, I., Ačkar, Đ., Barišić, V., Vlainić, M., Knežević, N., and Medverec Knežević, Z. 2019. Nonthermal methods for starch modification—A review. J. Food Process. Preserv, 43(12): e14242.
[71]Shen, H., Guo, Y., Zhao, J., Zhao, J., Ge, X., Zhang, Q., and Yan, W. 2021. The multi-scale structure and physicochemical properties of mung bean starch modified by ultrasound combined with plasma treatment. J. Int. J. Biol. Macromol, 191: 821-831.
[72]Han, L., Cao, S., Yu, Y., Xu, X., Cao, X., and Chen, W. 2021. Modification in physicochemical, structural and digestive properties of pea starch during heat-moisture process assisted by pre-and post-treatment of ultrasound. J. Food Chem, 360: 129929.
[73]Gallant, D., Degrois, M., Sterling, C., and Guilbot, A. 1972. Microscopic effects of ultrasound on the structure of potato starch preliminary study. J. Starch‐Stärke, 24(4): 116-123.
[74]Majeed, T., Wani, I.A., Hamdani, A.M., and Bhat, N.A. 2018. Effect of sonication and γ-irradiation on the properties of pea (Pisum sativum) and vetch (Vicia villosa) starches: A comparative study. J. Int. J. Biol. Macromol, 114: 1144-1150.
[75]Hoover, R., and Ratnayake, W.S. 2002. Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. J. Food Chem, 78(4): 489-498.
[76]Karaman, M., Tuncel, N.B., and Yılmaz Tuncel, N. 2017. The effect of ultrasound‐assisted extraction on yield and properties of some pulse starches. J. Starch‐Stärke, 69(9-10): 1600307.
[77]Acevedo, B.A., Villanueva, M., Chaves, M.G., Avanza, M.V., and Ronda, F. 2022. Modification of structural and physicochemical properties of cowpea (Vigna unguiculata) starch by hydrothermal and ultrasound treatments. J. Food Hydrocoll, 124: 107266.
[78]Chen, Z., Schols, H.A., and Voragen, A.G.J. 2003. Physicochemical properties of starches obtained from three varieties of Chinese sweet potatoes. J. Food Sci, 68(2): 431-437.
[79]Zhu, T., Jackson, D.S., Wehling, R.L., and Geera, B. 2008. Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. J. Cereal Chem, 85(1): 51-58.
[80]Zhu, F., Yang, X., Cai, Y.Z., Bertoft, E., and Corke, H. 2011. Physicochemical properties of sweetpotato starch. J. Starch‐Stärke, 63(5): 249-259.
[81]Zhu, F., Bertoft, E., Kallman, A., Myers, A.M., and Seetharaman, K. 2013. Molecular structure of starches from maize mutants deficient in starch synthase III. J. Agric. Food Chem, 61(41): 9899-9907.
[82]Abegunde, O.K., Mu, T.H., Chen, J.W., and Deng, F.M. 2013. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. J. Food Hydrocoll, 33(2): 169-177.
[83]Waramboi, J.G., Dennien, S., Gidley, M.J., and Sopade, P.A. 2011. Characterisation of sweetpotato from Papua New Guinea and Australia: Physicochemical, pasting and gelatinisation properties. J. Food Chem, 126(4): 1759-1770.
[84]Alcázar-Alay, S.C., and Meireles, M.A.A. 2015. Physicochemical properties, modifications and applications of starches from different botanical sources. J. Food Sci. Technol, 35: 215-236.
[85]Geddes, R., Greenwood, C.T., and Mackenzie, S. 1965. Studies on the biosynthesis of starch granules: Part III. The properties of the components of starches from the growing potato tuber. J. Carbohydr. Res, 1(1): 71-82.
[86]Li, G., Wang, S., and Zhu, F. 2016. Physicochemical properties of quinoa starch. J. Carbohydr. Polym, 137: 328-338.
[87]Cao, M., and Gao, Q. 2020. Effect of dual modification with ultrasonic and electric field on potato starch. J. Int. J. Biol. Macromol, 150: 637-643.
[88]Morrison, W.R., Milligan, T.P., and Azudin, M.N. 1984. A relationship between the amylose and lipid contents of starches from diploid cereals. J. Cereal Sci, 2(4): 257-271.
[89]Singh, N., Singh, J., Kaur, L., Sodhi, N.S., and Gill, B.S. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. J. Food Chem, 81(2): 219-231.
[90]Bertoft, E. 2017. Understanding starch structure: Recent progress. J. Agron, 7(3): 56.
[91]Gernat, C., Radosta, S., Damaschun, G., and Schierbaum, F. 1990. Supramolecular structure of legume starches revealed by X‐ray scattering. J. Starch‐Stärke, 42(5): 175-178.
[92]Hizukuri, S. 1985. Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. J. Carbohydr. Res, 141(2): 295-306.
[93]Miao, M., Zhang, T., and Jiang, B. 2009. Characterisations of kabuli and desi chickpea starches cultivated in China. J. Food Chem, 113(4): 1025-1032.
[94]Zhu, J., Li, L., Chen, L., and Li, X. 2012. Study on supramolecular structural changes of ultrasonic treated potato starch granules. J. Food Hydrocoll, 29(1): 116-122.
[95]Huang, Q., Li, L., and Fu, X. 2007. Ultrasound effects on the structure and chemical reactivity of cornstarch granules. J. Starch‐Stärke, 59(8): 371-378.
[96]Wang, S., Hu, X., Wang, Z., Bao, Q., Zhou, B., Li, T., and Li, S. 2020. Preparation and characterization of highly lipophilic modified potato starch by ultrasound and freeze-thaw treatments. J. Ultrason Sonochem, 64: 105054.
[97]Karwasra, B.L., Kaur, M., and Gill, B.S. 2020. Impact of ultrasonication on functional and structural properties of Indian wheat (Triticum aestivum L.) cultivar starches. J. Int. J. Biol. Macromol, 164: 1858-1866.
[98]Genkina, N.K., Kozlov, S.S., Martirosyan, V.V., and Kiseleva, V.I. 2014. Thermal behavior of maize starches with different amylose/amylopectin ratio studied by DSC analysis. J. Starch‐Stärke, 66(7-8): 700-706.
[99]Vamadevan, V., and Bertoft, E. 2015. Structure‐function relationships of starch components. J. Starch‐Stärke, 67(1-2): 55-68.
[100]Ai, Y., and Jane, J.L. 2015. Gelatinization and rheological properties of starch. J. Starch‐Stärke, 67(3-4): 213-224.
[101]Noda, T., Takahata, Y., Sato, T., Suda, I., Morishita, T., Ishiguro, K., and Yamakawa, O. 1998. Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. J. Carbohydr. Polym, 37(2): 153-158.
[102]Yu, S., Zhang, Y., Ge, Y., Zhang, Y., Sun, T., Jiao, Y., and Zheng, X.Q. 2013. Effects of ultrasound processing on the thermal and retrogradation properties of nonwaxy rice starch. J. Food Process Eng, 36(6): 793-802.
[103]Yang, W., Kong, X., Zheng, Y., Sun, W., Chen, S., Liu, D., Zhang, H., Fang, H., Tian, J., and Ye, X. 2019. Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure. J. Ultrason Sonochem, 59: 104709.
[104]Vela, A.J., Villanueva, M., Solaesa, Á.G., and Ronda, F. 2021. Impact of high-intensity ultrasound waves on structural, functional, thermal and rheological properties of rice flour and its biopolymers structural features. J. Food Hydrocoll, 113: 106480.
[105]Copeland, L., Blazek, J., Salman, H., and Tang, M.C. 2009. Form and functionality of starch. J. Food Hydrocoll, 23(6): 1527-1534.
[106]Hoover, R., and Sosulski, F.J.S.S. 1985. Studies on the functional characteristics and digestibility of starches from Phaseolus vulgaris biotypes. J. Starch‐Stärke, 37(6): 181-191.
[107]Sit, N., Misra, S., and Deka, S.C. 2014. Yield and functional properties of taro starch as affected by ultrasound. J. Food Bioproc Tech, 7: 1950-1958.
[108]Kim, Y.Y., Woo, K.S., and Chung, H.J. 2018. Starch characteristics of cowpea and mungbean cultivars grown in Korea. J. Food Chem, 263: 104-111.
[109]Zhong, Y., Xiang, X., Zhao, J., Wang, X., Chen, R., Xu, J., Luo, S., Wu, J., and Liu, C. 2020. Microwave pretreatment promotes the annealing modification of rice starch. J. Food Chem, 304: 125432.
[110]Schoch, T.J. 1968. Preparation and properties of various legume starches. J. Cereal Chem, 45: 564-573.
[111]Tolmasquim, E., Correa, A.M.N., and Tolmasqui, S.T. 1971. New starches. Properties of five varieties of cowpea starch. J. Cereal Chem.
[112]Tester, R.F., Morrison, W.R., and Schulman, A.H. 1993. Swelling and gelatinization of cereal starches. V. Risø mutants of Bomi and Carlsberg II barley cultivars. J. Cereal Sci, 17(1): 1-9.
[113]Tu, Z., Yin, Y., Wang, H., Liu, G., Chen, L., Zhang, P., Kou, Y., and Zhang, L. 2013. Effect of dynamic high‐pressure microfluidization on the morphology characteristics and physicochemical properties of maize amylose. J. Starch‐Stärke, 65(5‐6): 390-397.
[114]Ding, Y., Luo, F., and Lin, Q. 2019. Insights into the relations between the molecular structures and digestion properties of retrograded starch after ultrasonic treatment. J. Food Chem, 294: 248-259.
[115]Majeed, T., Wani, I.A., and Hussain, P.R. 2017. Effect of dual modification of sonication and γ-irradiation on physicochemical and functional properties of lentil (Lens culinaris L.) starch. J. Int. J. Biol. Macromol, 101: 358-365.
[116]Hughes, T., Hoover, R., Liu, Q., Donner, E., Chibbar, R., and Jaiswal, S. 2009. Composition, morphology, molecular structure, and physicochemical properties of starches from newly released chickpea (Cicer arietinum L.) cultivars grown in Canada. J. Food Res. Int, 42(5-6): 627-635.
[117]Qi, X., and Tester, R.F. 2016. Effect of native starch granule size on susceptibility to amylase hydrolysis. J. Starch‐Stärke, 68(9-10): 807-810.
[118]Acevedo, B.A., Villanueva, M., Chaves, M.G., Avanza, M.V., and Ronda, F. 2020. Starch enzymatic hydrolysis, structural, thermal and rheological properties of pigeon pea (Cajanus cajan) and dolichos bean (Dolichos lab‐lab) legume starches. J. Int. J. Food Sci. Technol, 55(2): 712-719.
[119]Kong, X., Kasapis, S., Bertoft, E., and Corke, H. 2010. Rheological properties of starches from grain amaranth and their relationship to starch structure. J. Starch‐Stärke, 62(6): 302-308.
[120]Zhu, F., Bertoft, E., and Li, G. 2016. Morphological, thermal, and rheological properties of starches from maize mutants deficient in starch synthase III. J. Agric. Food Chem, 64(34): 6539-6545.
[121]Wu, K., Dai, S., Gan, R., Corke, H., and Zhu, F. 2016. Thermal and rheological properties of mung bean starch blends with potato, sweet potato, rice, and sorghum starches. J. Food Bioproc Tech, 9: 1408-1421.
[122]Karunaratne, R., and Zhu, F. 2016. Physicochemical interactions of maize starch with ferulic acid. J. Food Chem, 199: 372-379.
[123]Chung, K.M., Moon, T.W., Kim, H., and Chun, J.K. 2002. Physicochemical properties of sonicated mung bean, potato, and rice starches. J. Cereal Chem, 79(5): 631-633.