کربوکسی متیلاسیون صمغ کندرو بررسی گرانروی و شاخص‌های رنگ‌سنجی

نویسندگان
1 گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه آزاد اسلامی، واحد سبزوار، سبزوار، ایران.
2 گروه شیمی، دانشکده علوم پایه، دانشگاه حکیم سبزواری، سبزوار، ایران.
3 گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه آزاد اسلامی، واحد سبزوار، سبزوار، ایران
چکیده
کندر یک صمغ رزینی است که از برخی گونه‌های جنس Boswellia به دست می‌آید. استفاده از کندر جهت مصارف غذایی و دارویی به بیش از پنج هزار سال قبل باز می‌گردد، ولی با وجود اهمیت و کاربرد آن فقط 27-35% از آن محلول در آب می‌باشد. با توجه به نامحلول بودن بخش اعظم صمغ کندر، در پژوهش حاضر با استفاده از روش سطح پاسخ، تاثیر استفاده از شرایط مختلف اصلاح شیمیایی(غلظت NaOH (X1)، دمای واکنش(X2)، غلظت منوکلرواستیک اسید[1]( (MCA(X3)) برروی افزایش درصد حلالیت صمغ کندر مورد بررسی قرار گرفت. نتایج حاصل از فرآیند بهینه‌سازی اصلاح شیمیایی صمغ کندر بیانگر این مطلب است که بیشترین میزان درصد حلالیت برابر۸۵.۴۹% بود. لذا غلظت NaOH و MCA به ترتیب برابر ۰.۰۴۸ ، ۰.۰۱6 مول و دما 75 درجه سلیسیوس به عنوان بهترین شرایط بهینه سازی انتخاب شد. در ضمن، گرانروی ذاتی و وزن مولکولی صمغ بومی بیشتر از صمغ اصلاح شده در شرایط بهینه بود. بین ویسکوزیته ظاهری صمغ طبیعی (mPa.s 726/0 ± 02/18) و اصلاح شده (mPa.s 681/0 ± 36/17) تفاوت معنی‌داری دیده می‌شود(p<0.05). نتایج حاکی از این است که صمغ بومی و اصلاح شده در شرایط بهینه رفتار نسبی رقیق شونده با افزایش سرعت برشی را نشان داده و رفتار آنها مشابه سودوپلاستیک می‌باشد. آزمون رنگ‌سنجی با نرم‌افزار image J حاکی از آن بود که کربوکسی متیلاسیون صمغ کندر منجر به تغییرات معنی داری (P <0.05) در فاکتور اختلاف رنگی کل (ΔE) و مقادیر شاخص روشنایی (WI)، فاکتور روشنی((L*، فاکتور قرمزی- سبزی(a*) و فاکتور زردی- آبی(b*) شده است.



[1] - Monochloroacetic Acid
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Carboxymethylation of frankincense gum and investigation of viscosity and colorimetric indices

نویسندگان English

ava daliri 1
Hamid Tavakkoli pour 1
Behnam Mahdavi 2
Mohammad Reza Saeadi Asl 3
Amirhosein Elhamirad 1
1 Department of Food Industry Science and Engineering, Faculty of Agriculture, Islamic Azad University, Sabzevar branch, Sabzevar, Iran
2 Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran.
3 Department of Food Industry Science and Engineering, Faculty of Agriculture, Islamic Azad University, Sabzevar branch, Sabzevar, Iran
چکیده English

Frankincense is a resinous gum obtained from some species of the Boswellia genus. The use of frankincense for food and medicinal uses dates back to more than five thousand years ago, but despite its importance and application, only 27-35% of it is soluble in water. As most frankincense gum is insoluble, this research used the response surface method to study the effect of different chemical modification conditions (NaOH concentrations (X1), reaction temperatures (X2), and MCA concentrations (X3)) on increasing the solubility percentage. The results of the optimization process of the chemical modification of frankincense gum indicate that the conditions of maximum solubility are equal to 85.49, with a desirability rate of 0.97. Therefore, the concentration of NaOH and MCA equal to 0.048, 0.01 mol, and a temperature of 75 degrees Celsius chose as the best optimization conditions. In addition, the intrinsic viscosity and molecular weight of the native gum were higher than the modified gum under optimal conditions. There is a significant difference between the apparent viscosity of natural gum (18.02 ± 0.726 mPa.s) and modified (17.36 ± 0.681 mPa.s) (p>0.05). The results indicate that native and modified gum in optimal conditions show a shear thinning behavior with increasing shear rate, and their behavior is similar to pseudoplastic. The colorimetric test with image J software indicated that carboxymethylation of frankincense gum led to significant changes (P < 0.05) in the total color difference factor (ΔE) and whiteness index (WI), L*, a*, and b*factor.

کلیدواژه‌ها English

monochloroacetic acid
Chemical modification
frankincense gum
Viscosity
carboxymethylation
colorimetry
[1] DeCarlo, A., et al., The essential oils of the Burseraceae, in Essential Oil Research. 2019, Springer. p. 61-145.
[2] Eslamieh, J., Cultivation of Boswellia. A Book’s Mind, Fort Collins, Colorado, USA, 2017.
[3] Thulin, M., A. Decarlo, and S.P. Johnson, Boswellia occulta (Burseraceae), a new species of frankincense tree from Somalia (Somaliland). Phytotaxa, 2019. 394(3): p. 219–224-219–224.
[4] Assefa, M., et al., Biophysical and chemical investigations of frankincense of Boswellia papyrifera from North and Northwestern Ethiopia. Journal of Chemical and Pharmaceutical Research, 2012. 4(2): p. 1074-1089.
[5] Abdel-Tawab, M., O. Werz, and M. Schubert-Zsilavecz, Boswellia serrata. Clinical pharmacokinetics, 2011. 50(6): p. 349-369.
[6] Assimopoulou, A., S. Zlatanos, and V. Papageorgiou, Antioxidant activity of natural resins and bioactive triterpenes in oil substrates. Food chemistry, 2005. 92(4): p. 721-727.
[7] Başer, K., et al., Essential oils of some Boswellia spp., myrrh and opopanax. Flavour and Fragrance Journal, 2003. 18(2): p. 153-156.
[8] Ben-Yehoshua, S., C. Borowitz, and L. Ondrej Hanuš, 1 Frankincense, Myrrh, and Balm of Gilead: Ancient Spices of Southern Arabia and Judea. Horticultural Reviews, 2012. 39(1): p. 3-66.
[9] Dannaway, F.R., Strange fires, weird smokes and psychoactive combustibles: Entheogens and incense in ancient traditions. Journal of psychoactive drugs, 2010. 42(4): p. 485-497.
[10] Mohanty, S. and M. Krishna, Proximate analysis and standardization of plant exudates: gum olibanum and gum dikamali. International Journal of Pharmaceutical Sciences Review and Research, 2014. 24(1): p. 172-176.
[11] Kurita, O., Y. Miyake, and E. Yamazaki, Chemical modification of citrus pectin to improve its dissolution into water. Carbohydrate polymers, 2012. 15;87(2):1720-7.
[12] Li, X., et al., Carboxylic modification of welan gum. Journal of Applied Polymer Science, 2020. 137(3): p. 48301.
[13] Shi, Y., et al., Characterization and emulsifying properties of octenyl succinate anhydride modified Acacia seyal gum (gum arabic). Food hydrocolloids, 2017. 65: p. 10-16.
[14] Ribeiro, F.W.M., et al., Chemical modification of gum arabic and its application in the encapsulation of C ymbopogon citratus essential oil. Journal of Applied Polymer Science, 2015. 132(8).
[15] Sharma, B.R., et al., Carboxymethylation of Cassia tora gum. Journal of applied polymer science, 2003. 89(12): p. 3216-3219.
[16] Ghasemi Dehkordi, N., et al., Iranian herbal pharmacopoeia. Ministry of Health Pub. Tehran, 2002. 1: p. 105.
[17] Gebrehiwot, K., et al., Introducing Boswellia papyrifera (Del.) Hochst and its non-timber forest product, frankincense. International forestry review, 2003. 5(4): p. 348-353.
[18] Verghese, J., Olibanum in focus. Perfumer & flavorist, 1988. 13(1): p. 1-12.
[19] Gupta, S., P. Sharma, and P. Soni, Carboxymethylation of Cassia occidentalis seed gum. Journal of Applied Polymer Science, 2004. 94(4): p. 1606-1611.
[20] Betancur-Ancona, D., J. López-Luna, and L. Chel-Guerrero, Comparison of the chemical composition and functional properties of Phaseolus lunatus prime and tailing starches. Food Chemistry, 2003. 82(2): p. 217-225.
[21] Zargaraan, a., m.a. Mohammadifar, and s. Balaaghi, Comparison of some chemical and rheological properties of Iranian gum tragacanth exudate from two Astragalus species ( A. floccosus and A. rahensis. Iranian Journal of Nutrition Sciences & Food Technology, 2009. 3(4): p. 9-17.
[22] Yebeyen, D., M. Lemenih, and S. Feleke, Characteristics and quality of gum arabic from naturally grown Acacia senegal (Linne) Willd. trees in the Central Rift Valley of Ethiopia. Food Hydrocolloids, 2009. 23(1): p. 175-180.
[23] Van Krevelen, D.W. and K. Te Nijenhuis, Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. 2009: Elsevier.
[24] Moghbeli, S., et al., Influence of pectin-whey protein complexes and surfactant on the yield and microstructural properties of date powder produced by spray drying. Journal of Food Engineering, 2019. 242: p. 124-132.
[25] Salehi, F. and M. Kashaninejad, Effect of drying methods on rheological and textural properties, and color changes of wild sage seed gum. Journal of food science and technology, 2015. 52(11): p. 7361-7368.
[26] Bourne, M. and S. abbasi, Food rheology: food texture and viscosity (concept and measurement). 2007, iran: Tehran Marz Danesh. 1.
[27] Yang, H. and R.G. Reddy, Electrochemical deposition of zinc from zinc oxide in 2: 1 urea/choline chloride ionic liquid. Electrochimica Acta, 2014. 147: p. 513-519.
[28] Koocheki, A., A.R. Taherian, and A. Bostan, Studies on the steady shear flow behavior and functional properties of Lepidium perfoliatum seed gum. Food Research International, 2013.1;50(1):446-56.
[29] Rana, V., et al., Modified gums: Approaches and applications in drug delivery. Carbohydrate polymers, 2011. 83(3): p. 1031-1047.
[30] Huanbutta, K. and W. Sittikijyothin, Development and characterization of seed gums from Tamarindus indica and Cassia fistula as disintegrating agent for fast disintegrating Thai cordial tablet. Asian journal of pharmaceutical sciences, 2017. 12(4): p. 370-377.
[31] Samari-Khalaj, M. and S. Abbasi, Solubilisation of Persian gum: Chemical modification using acrylamide. International journal of biological macromolecules, 2017. 101: p. 187-195.
[32] SAMARI, K.M. and S. ABBASI, CHEMICAL MODIFICATION OF INSOLUBLE FRACTION OF PERSIAN GUM (MOUNTAIN ALMOND TREE GUM). 2013.
[33] Huanbutta, K. and W. Sittikijyothin, Use of seed gums from Tamarindus indica and Cassia fistula as controlled-release agents. Asian journal of pharmaceutical sciences, 2018. 13(5): p. 398-408.
[34] Al-Harrasi, A., et al., Proximate analysis of the resins and leaves of Boswellia sacra. Journal of Medicinal Plants Research, 2012. 6(16): p. 3098-3104.
[35] Hido, A., et al., Population status and resin quality of frankincense Boswellia neglecta (burseraceae) growing in South omo, southwestern Ethiopia. Journal of Sustainable Forestry, 2020. 39(6):620-34.
[36] Prakash, N.A. and R. Prajapati, Standardization of Sustainable Oleo Gum Resin Tapping Technique in Salai (Boswellia serrata Roxb.) from Tropical Dry Deciduous Forest of Chhattisgarh. Journal homepage: http://www. ijcmas. com, 2020. 9(10).
[37] Rahimi, S. and S. abbasi, Characterization of some physicochemical and gelling properties of Persian gum. Innovative food technologies, 2014. 1(4): p. 13-27.
[38] Hashemi Gahruie, H., et al., Study on hydrophobic modification of basil seed gum-based (BSG) films by octenyl succinate anhydride (OSA). Carbohydrate Polymers, 2019. 219: p. 155-161.
[39] Amin, A.M., et al., Extraction, purification and characterization of durian (Durio zibethinus) seed gum. Food Hydrocolloids, 2007. 21(2): p. 273-279.
[40] Shirwaikar, A., et al., Formulation and evaluation of Boswellia serrata tablets. Indian journal of pharmaceutical sciences, 2005. 67(4): p. 427.
[41] Hussain, M., et al., Thermal stability and haemolytic effects of depolymerized guar gum derivatives. Journal of food science and technology, 2018. 55(3): p. 1047-1055.
[42] Mhinzi, G.S., Properties of gum exudates from selected Albizia species from Tanzania. Food chemistry, 2002. 77(3): p. 301-304.
[43] Debon, S.J. and R.F. Tester, In vitro binding of calcium, iron and zinc by non-starch polysaccharides. Food Chemistry, 2001. 73(4): p. 401-410.
[44] Daoub, R.M., et al., Characterization and functional properties of some natural Acacia gums. Journal of the Saudi Society of Agricultural Sciences, 2018. 17(3): p. 241-249.
[45] Khan, A.J., Medicinal properties of frankincense. International Journal of Nutrition, Pharmacology, Neurological Diseases, 2012. 2(2): p. 79.
[46] Razavi, S.M.A. and M. Irani, Rheology of food gum. Bioactive Molecules in Food; Mérillon, JM, Ramawat, KG, Eds, 2019: p. 1-29.
[47] Sharma, B.R., V. Kumar, and P. Soni, Carbamoylethylation of guar gum. Carbohydrate polymers, 2004. 58(4): p. 449-453.
[48] Gong, H., et al., Synthesis and characterization of carboxymethyl guar gum and rheological properties of its solutions. Carbohydrate Polymers, 2012. 88(3): p. 1015-1022.
[49] Tulegenovna, K.P., et al., Modification of Xanthan Gum with Methyl Methacrylate and Investigation of Its Rheological Properties. International Journal of Technology, 2022. 13(2):389-97.
[50] Gundidza, M., et al., Rheological, moisture and ash content analyses of a gum resin from Commiphora Africana. African J Food Sci, 2011. 5: p. 188-193.
[51] Munir, H., et al., Thermal Evaluation, Rheological Properties and Characterization of Pristine, Modified and Polyacrylamide-Mediated Grafted Acacia modesta Gum. J Pure Appl Microbiol, 2020. 14(2): p. 1397-1403.
[52] Mohammadi, S., S. Abbasi, and M. Scanlon, Development of emulsifying property in Persian gum using octenyl succinic anhydride (OSA). International Journal of Biological Macromolecules, 2016. 89: p. 396-405.
[53] Eren, N.M., P.H. Santos, and O. Campanella, Mechanically modified xanthan gum: Rheology and polydispersity aspects. Carbohydrate polymers, 2015. 134: p. 475-484.
[54] Liu, J., et al., Carboxymethyl derivatives of flaxseed (Linum usitatissimum L.) gum: characterisation and solution rheology. International Journal of Food Science & Technology, 2016. 51(2): p. 530-541.
[55] Sharma, B.R., V. Kumar, and P.L. Soni, Cyanoethylation of Cassia tora gum. Starch‐Stärke, 2003. 55(1): p. 38-42.
[56] darabzade, n., et al., Investigating and comparing the intrinsic viscosity and overlap parameter of local Iranian and commercial locust bean gum. Food industry research (agricultural knowledge,2014. 24(4) :p. 543-557.
[57] Gómez-Díaz, D., J.M. Navaza, and L. Quintáns-Riveiro, Intrinsic viscosity and flow behaviour of Arabic gum aqueous solutions. International Journal of Food Properties, 2008. 11(4): p. 773-780.
[58] Shobha, M., et al., Modification of guar galactomannan with the aid of Aspergillus niger pectinase. Carbohydrate polymers, 2005. 62(3): p. 267-273.
[59] Mudgil, D., S. Barak, and B. Khatkar, Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum. Carbohydrate polymers, 2012. 90(1): p. 224-228.
[60] Saifullah, S., K-means Segmentation Based-on Lab Color Space for Embryo Egg Detection. arXiv preprint arXiv:2103.02288, 2021.
[61] Ghanbarzadeh, B., H. Almasi, and A.A. Entezami, Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative food science & emerging technologies, 2010. 11(4): p. 697-702.
[62] Amid, B.T. and H. Mirhosseini, Optimisation of aqueous extraction of gum from durian (Durio zibethinus) seed: A potential, low cost source of hydrocolloid. Food chemistry, 2012. 132(3): p. 1258-1268.
[63] Nagano, T., et al., The use of color to quantify the effects of pH and temperature on the crystallization kinetics of goethite under highly alkaline conditions. Clays and Clay Minerals, 1994. 42(2): p. 226-234.
[64] Hosseininezhad, M. and A. Abedfar, A Study on the Qualitative Characteristics and Microbial Survival of Lactobacillus acidophilus and Bacillus coagulans in Probiotic Bread. Research and Innovation in Food Science and Technology, 2018. 7(3): p. 337-352.
[65] Chung, H.-S., et al., Changes in color parameters of corn kernels during roasting. Food Science and Biotechnology, 2014. 23(6): p. 1829-1835.
[66] Özdemir, M. and O. Devres, Kinetics of color changes of hazelnuts during roasting. Journal of Food Engineering, 2000. 44(1): p. 31-38.