بررسی تاثیر شرایط نگهداری بر پایداری نانولیپوزوم‌های حاوی فیکوسیانین پوشش داده شده با کیتوزان

نویسندگان
1 دانشجوی دکتری گروه علوم و مهندسی صنایع غذایی، واحد آزادشهر، دانشگاه آزاد اسلامی، آزادشهر، ایران.
2 استادیار مرکز تحقیقات صنایع غذایی شرق گلستان، واحد آزادشهر، دانشگاه آزاد اسلامی، آزادشهر، ایران.
3 استاد گروه مهندسی مواد و طراحی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
4 1-مرکز تحقیقات سلامت فراورده های غذایی، دارویی و طبیعی، دانشگاه علوم پزشکی گلستان، گرگان، ایران.2-گروه نانوتکنولوژی پزشکی، دانشکده فناوری‌های نوین پزشکی، دانشگاه علوم پزشکی گلستان، گرگان، ایران.
چکیده
چکیده

یکی از مهم‌ترین مسائل و چالش‌ها در زمینه استفاده از رنگ‌ها در مواد غذایی، بهبود و افزایش پایداری آن‌ها در مراحل فرآوری و همچنین کنترل آزاد شدن تا زمان مصرف می‌باشد. از این‌رو هدف از این پژوهش تولید نانولیپوزوم‌های حاوی فیکوسیانین پوشش داده شده با کیتوزان با روش هیدراسیون لایه نازک- فراصوت به‌منظور افزایش پایداری فیکوسیانین و بررسی ویژگی‌های فیزیکی و راندمان انکپسولاسیون آن در طی شرایط نگهداری بود. در این مطالعه فیکوسیانین با غلظت‌های مختلف کیتوزان (0، 1/0، 2/0، 4/0 و 6/0 میلی‌گرم بر میلی‌لیتر) پوشش‌داده شد و در دو دما (4 و 25 درجه سیلسیوس) برای 28 روز نگهداری گردید و سپس برای تعیین بهترین غلظت کیتوزان برای پوشش نانولیپوزوم‌های تولیدی، آزمون‌های راندمان انکپسولاسیون، اندازه ذرات و پتانسل زتا روی آنها صورت پذیرفت. نتایج نشان داد که با افزایش غلظت کیتوزان به بیش از 2/0 میلی‌گرم در میلی‌لیتر تغییر معنی‌داری در راندمان انکپسولاسیون مشاهده نگردید (05/0p>) و نمونه‌ی فاقد کیتوزان کمترین اندازه ذرات را داشت که با نمونه‌های حاوی 2/0 و 4/0 کیتوزان اختلاف آماری معنی‌داری نداشت (05/0p>). با افزایش میزان کیتوزان در پوشش نانولیپوزوم‌ها، میزان پتانسیل زتا نمونه‌ها افزایش یافت. در نهایت نمونه‌ا‌ی‌ که در پوشش نانولیپوزوم خود، حاوی 2/0 میلی‌گرم بر میلی‌لیتر کیتوزان بود به‌عنوان بهترین نمونه انتخاب گردید. یافته‌های حاصل از آزمون‌های انجام شده در طول نگهداری نانولیپوزوم‌ها مشخص نمود که نانولیپوزوم دارای فیکوسیانین که فاقد هرگونه پوشش کیتوزان در روز تولید بود، بیشترین میزان راندمان انکپسولاسیون داشت و از طرفی مشخص گردید که با افزایش دمای نگهداری و زمان نگهداری میزان راندمان انکپسولاسیون کاهش ولی اندازه ذرات افزایش یافت. کمترین پتانسیل زتا نمونه‌ها مربوط به نمونه نانولیپوزوم فاقد فیکوسیانین بود که تا روز 21 ام نگهداری در دمای 4 درجه سیلسیوس تغییر معنی‌داری نداشت. تصاویر میکروسکوپ الکترونی روبشی از نمونه‌‌ها نیز موید نتایج حاصل از اندازه­گیری ذرات بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of storage conditions on the stability of chitosan-coated nanoliposomes containing phycocyanin

نویسندگان English

abdolkhalil azari 1
Seied Hossein Hosseini ghaboos 2
Seid Mahdi Jafari 3
Vahid Erfani Moghadam 4
1 PhD Student, Department of Food Science and Engineering, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran.
2 Assistant Professor Food science and Technology Research center of East Golestan , Azadshahr Branch, Islamic Azad University, Azadshahr, Iran.
3 Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural resources, Gorgan, Iran.
4 ۱- Food, Drug, Natural Products Health Research Centre, Golestan University of Medical Science, Gorgan, Iran.۲- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
چکیده English

Abstract

Increasing and improving the stability of colors in food during processing and also controlling the release until consumption is one of the most important issues and challenges in the use of natural colors in food. Hence, the objective of this study was to produce phytocyanin-containing nanoliposomes coated with chitosan by thin-layer ultrasonic hydration method to increase the stability of phycocyanin and to investigate its physical properties and encapsulation efficiency during storage. In this study, phycocyanin was coated with different concentrations of chitosan (0, 0.1, 0.2, 0.4, and 0.6 mg/mL) and stored at two temperatures (4 and 25° C) for 28 days. Then, to determine the best concentration of chitosan for coating the nanoliposomes, encapsulation efficiency, particle size, and zeta potential tests were performed. The results revealed that by increasing the concentration of chitosan to more than 0.2 mg/mL, no significant change in encapsulation efficiency was observed (p> 0.05). The sample without chitosan had the lowest particle size which was not a significant difference from samples containing 0.2 and 0.4 (p> 0.05). Increasing chitosan in the coating of nanoliposomes has led to increased zeta potential. Finally, a sample containing 0.2 mg/mL chitosan was selected as the best sample. Findings from analyses performed during the storage of nanoliposomes showed that nanoliposomes containing phycocyanin, which did not have any chitosan coating, had the highest encapsulation efficiency. On the other hand, it was found that with increasing storage temperature and storage time, the encapsulation efficiency decreased but the particle size increased. The lowest zeta potential of the samples was related to the phycocyanin-free nanoliposome sample which did not change significantly until the 21st day of storage at 4 °C. Scanning electron microscopy (SEM) images of the samples also confirmed the results of particle measurements.

کلیدواژه‌ها English

Nanoliposomes
Phycocyanin
Chitosan
Coating
Thin-layer hydration method - Ultrasound
1-Baygan, A., Jafari Jade, A., Mehravar, N. and Habibzadeh, M. 2016. Natural pigments and its application in food industry. The First International Congress and the 24th National Congress of Food Science and Technology of Iran. Iranian Food Science and Technology Association, Tarbiat Modares University, Tehran. (In Persian).
2- McClements, D. J. 2005. Food emulsions. principles, practices and techniques. CRC Press, Boca Raton.
3- Saranraj, P. and Sivasakthi, S. 2014. Spirulina platensis -Food for future. Asian Journal of Pharmaceutical Science & Technology. 4: 26-33.
4- Bermejo, R. 2014. Phycocyanins. In N. Sharma, A. Rai, & L. Stal (Eds.), Cyanobacteria: An Economic Perspective. John Wiley & Sons Ltd.
5- Newsome, A., Culver, C. and Breemen, R. 2014. Nature’s palette: the search for natural blue colorants. Journal of Agricultural and Food Chemistry. 6498-6511.
6- Jesperse, L., Strømdahl, L. D., Olsen, K. and Skibsted, L.H. 2005. Heat and light stability of three natural blue colorants for use in confectionary and beverages. European Food Research and Technology. 220: 261–266.
7- Calvo, P., Hernandez, T., Lozano, M. and Gomez, D.G. 2010. Microencapsulation of extra-virgin olive oil by spray-drying: Influence of wall material and olive quality. European Journal of Lipid Science and Technology. 112: 852-858.
8- Horváth, H., Kovács, A.W., Riddick, C. and Présing, M. 2013. Extraction methods for phycocyanin determination in freshwater filamentous cyanobacteria and their application in a shallow lake. European Journal of Phycology. 48: 278-286.
9- Hu, B., Pan, C., Sun, Y., Hou, Z., Ye, H., Hu, B. and Zeng, X. 2008. Optimization of fabrication parameters to produce chitosan- tripolyphosphate nanoparticles for delivery of tea catechins. Jounal of Agriculture Food Chemistry. 56: 7451-7458.
10- Luo, Y., Zhang, B., Whent, M., Yu, L.L., Wang, Q. 2011. Preparation and characterization of zein/chitosan complex for encapsulation of a-tocopherol, and its in vitro controlled release study. Colloids Surf. B: Biointerfaces. 85: 145-152.
11- Woranuch, S. and Yoksan, R. 2013. Eugenol-loaded Chitosan Nanoparticles. I. Thermal Stability Improvement of Eugenol through Encapsulation. Journal of Carbohydrate Polymer. 96: 578-585.
12- Ghaderi-Ghahfarokhi, M., Barzegar, M., Sahari, M. A., Ahmadi Gavlighi, H. and Gardini, F. 2017. Chitosan-cinnamon essential oil nano-formulation: Application as a novel additive for controlled release and shelf life extension of beef patties. International Journal of Biological Macromolecules. 16 (10): 1-17.
13- Lange, A., Neves, P., Cardoso, C., Leidiani, M., Humberto, M., Riella, G., Cabral, N., Hellen, K., and Stulzer, K. 2013. Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Colloids and Surfaces A: Physicochem. Eng. Aspects. 10 (6): 1-16.
14- Keller, B.C. 2001. Liposomes in nutrition. Trends in Food Science and Technology. 12: 25-31.
15- Ghorbanzade, T., Jafari, S.M., Akhavan, S. and Hadavi, R. 2017. Nano-encapsulation of fish oil in nanoliposomes and its application in fortification of yogurt. Food Chemistry. 216: 146-152.
16- Emami, S., Azadmard-Damirchi, S., Peighambardoust, S.H., Valizadeh, H. and Hesari, J. 2016. Liposomes as carrier vehicles for functional compounds in food sector. Journal of Experimental Nanoscienc. 11: 1-23.
17- Hao, J., Guo, B., Yu, Sh., Zhang, W., Zhang, D., Wang, J. and Wang, Y. 2017. Encapsulation of the flavonoid quercetin with chitosan-coated nano-liposomes. Food Science and Technology. 85: 37-44.
18- Thamaket, P. and Raviyan, P. 2015. Preparation and physical propertiesof carotenoids encapsulated in chitosancross-linked tripolyphosphatenanoparticles. Food and Applied Bioscience Journal, 3 (1): 69-84.
19- Yan, M., Liu, B., Jiao, X., and Qin, S. 2013. Preparation of phycocyanin microcapsules and it’s properties. Food and Bioproducts Processing. 92(1): 89-97.
20- Manconi, M., Mura, S., Manca, M.L., Fadda, A.M., Dolz, M., Hernandez, M.J., Casanovas, A. and Diez-Sales, O. 2010. Chitosomes as drug delivery systems for c-phycocyanin: preparation and characterization. International Journal of Pharmaceutics. 392: 92-100.
21- Akbarbaglu, Z., Jafari, S.M., Sarabandi, K., Mohammadi, M., Heshmati, M. K. and Pezeshki, A. 2019. Influence of spray drying encapsulation on the retention of antioxidant properties and microstructure of flaxseed protein hydrolysates. Colloidsand Surfaces B: Biointerfaces, 178: 421–429.
22- Li, Z., Paulson, A.T. and Gill, T.A. 2015. Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. Journal of Functional Foods. 19: 733–743.
23- Joye, I.J., Davidov-Pardo, G. and McClements, D.J. 2015. Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 2: Stability and functionality. Food Hydrocolloids. 49: 127-134.
24- Fathi, M., Varshosaz, J., Mohebbi, M. and Shahidi, F. 2013. hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carries for food fortification: preparation, characterization, and modeling. Food bioprocess technology. 6: 1464-1475.
25- Sarabandi, K. and Jafari, S.M. 2020. Effect of chitosan coating on the properties of nanoliposomes loaded with flaxseed-peptide fractions: Stability during spray-drying. Food Chemistry. 310: 1-10.
26- Liu, W. L., Ye, A., Liu, C., Han, J. and Singh, H. 2015. Behavior of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chemistry. 175: 16-24.
27- da Rosa Zavareze, E., Telles, A. C., El Halal, S. L. M., da Rocha, M., Colussi, R., de Assis L. M., Suita de Castro, L. A., Guerra Dias, A. R. and Prentice-Hernández, C. 2014. Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. Food Science and Technology. 59: 841-848.
28- Mun, S., Decker, E.A. and McClements, D.J. 2005. Influence of droplet characteristics on the formation of oil-in-water emulsions stabilized by surfactant-chitosan layers.s Langmuir. 21: 6228-6234.
29- Ramezanzade, L., Hosseini, S.F. and Nikkhah, M. 2017. Biopolymercoated nanoliposomes as carriers of rainbow trout skinderived antioxidant peptides. Food Chemistry. 234: 220- 229.
30- Mosquera, M., Giménez, B., da Silva, I. M., Boelter, J. F., Montero, P., Gómez-Guillén, M. C. and Brandelli, A. 2014. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chemistry. 156: 144-150.
31- Sarabandi, K., Peighambardoust, S.H., Mahoonak, A.S. and Samaei, S.P. 2017. Effect of carrier types and compositions on the production yield, microstructure and physical characteristics of spray dried sour cherry juice concentrate. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-017-9540-3.
32- Rabelo, R.S., Oliveira, I.F., da Silva, V.M., Prata, A. S. and Hubinger, M.D. 2018. Chitosan coated nanostructured lipid carriers (NLCs) for loading Vitamin D: A physical stability study. International Journal of Biological Macromolecules. 119: 902–912.
33- Gibis, M., Zeeb, B. and Weiss, J. 2014. Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocolleid. 38: 28-39.
34- Liu, W.L., Ye, A., Liu, C.M., Liu, W. and Singh, H. 2012. Structure and integrity of liposomes prepared from milk or soybeanderived phospholipids during in vitro digestion. Food Research International. 48 (2): 499-506.
35- Ojagh. S.M., Hasani, S. and Hasani, M. 2022. The Effect of Freezing/thawing and Freeze-drying / Rehydration Processeson the Physical Stability of Nano-Liposomes Containing the Bioactive Peptides. Journal of Innovation in Food Science and Technology. 13(4): 65-81. (In Persian).
36- Lujan, H., Griffin, W.C., Taube, J.H. and Sayes, C.M. 2019. Synthesis and characterization of nanometer-sized liposomes for encapsulation and micro RNA transfer to breast cancer cells. International Journal of Nanomedicine. 14: 5159–5173.
37-Mohammadi, M., Ghanbarzadeh, B. and Hamishehkar, H. 2014. Formulation of Nanoliposomal Vitamin D3 for Potential Application in Beverage Fortification. Advanced Pharmaceutical Bulletin. 4 (2): 569-575.
38- Borges, O., Silva, M., de Sousa, A., Borchard, G., unginger, H.E. and Cordeiro-da-Silva,A., 2008. Alginate coated chitosan nanoparticles are an effective subcutaneous aduvant for hepatitis B surface antigen. Int. Immunopharmacol. 8: 1773-1780.