استفاده از روش های مختلف حرارتی و غیرحرارتی به منظور تانن زدایی صمغ فارسی

نویسندگان
1 استادیار، گروه فناوری صنایع غذایی، دانشکده فناوری کشاورزی (ابوریحان)، دانشگاه تهران، پاکدشت، ایران.
2 دانش آموخته کارشناسی ارشد، گروه فناوری صنایع غذایی، دانشکده فناوری کشاورزی (ابوریحان)، دانشگاه تهران، پاکدشت، ایران.
چکیده
صمغ فارسی یک هیدروکلوئید بومی ایرانی است که از تنه و شاخه­های درخت بادام کوهی به دست می­آید. از لحاظ ظاهری، این صمغ دارای رنگ­های مختلفی است که بین رنگ و میزان تانن موجود در آن رابطه مستقیم وجود دارد: هر چه تانن بیشتر، رنگ تیره‌تر. تانن به عنوان یک ماده ضد تغذیه­ای مطرح است، چرا که می­تواند پروتئین­ها و عناصر کم مقدار را از دسترس خارج کند. لذا، تانن­زدایی صمغ فارسی می­تواند منجر به افزایش کیفیت و نیز میزان کاربرد وحجم مورد استفاده از صمغ در صنعت غذا شود. بنابراین، هدف از این تحقیق استفاده از روش‌های مختلف حرارتی و غیرحرارتی به منظور تانن‌زدایی صمغ فارسی بود. در این راستا، از تیمارهای خیساندن در آب و محلول‌های نمکی (یک یا دو ظرفیتی) به عنوان روش­های غیرحرارتی استفاده شد. از طرف دیگر، اتوکلاو کردن (121 درجه سلسیوس به مدت 20 دقیقه) و جوشاندن (5، 10 و 15 دقیقه) به عنوان روش­های حرارتی جهت کاهش میزان تانن صمغ­های فارسی تفکیک شده در 3 دسته بر اساس رنگ (سفید، زرد و قهوه­ای) مورد استفاده قرار گرفتند. هم­چنین­، تاثیر تانن­زدایی بر میزان کاهش وزن گرانول­های صمغ و ویژگی‌های رئولوژیکی آن مورد مطالعه قرار گرفت. بر اساس نتایج به دست آمده، بیشترین میزان کاهش تانن متعلق به صمغ فارسی قهوه­ای بود که بالاترین بازدهی تانن­زدایی به تیمارهای خیساندن به مدت 180 دقیقه (0/25 ± 75/67 درصد)، تیمار گرانول­های صمغ با محلول کلرید کلسیم 1 درصد (0/54 ± 74/32 درصد) و جوشاندن به مدت 15 دقیقه (0/19 ± 67/08 درصد) تعلق داشت (0/05 < p). طبق آزمون­های رئولوژیکی، گرانروی ظاهری نمونه­های خیسانده شده در آب، خیسانده شدن در محلول کلریدکلسیم و جوشانده شده در مقایسه با نمونه شاهد بیشتر بود، اگرچه تانن­زدایی تغییری بر نوع رفتار جریانی نمونه­های تیمار شده نداشته و مناسب­ترین مدل برای نمونه­های شاهد و تیمار شده مدل هرشل-بالکلی بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of different thermal and non-thermal methods for removal of tannin from Persian gum

نویسندگان English

Fatemeh Azarikia 1
Pardis Ghasemi 2
1 Assistant Professor, Department of food technology, College of agricultural technology (Aburaihan), University of Tehran, Pakdasht, Iran.
2 M.Sc, Department of food technology, College of agricultural technology (Aburaihan), University of Tehran, Pakdasht, Iran.
چکیده English

Persian gum is an Iranian native gum which obtains from the trunk and branches of wild almond tree. This gum is found in different colors and there is a direct relation between its color and tannin content: darker the color, higher the amount of tannin. Since the bioavailability of proteins and minerals is limited by tannins, they are known as anti-nutrient compounds; hence, it is essential to remove tannin from Persian gum in order to increase its quality and amount of utilization in the food industry. Thereupon, tannin removal from Persian gum using different thermal and non-thermal methods was the main aim of this research. In this regard, soaking either in water or saline solutions (mono- and divalent salts) was considered as non-thermal method. On the other hand, autoclaving (121 ̊C for 20 min) and boiling (5, 10 and 15 min) were applied as thermal methods for tannin removal of Persian gum which was categorized based on color: white, yellow and brownish. As well, weight reduction of gum granules and rheological properties were investigated after tannin removal. According to the results, the highest tannin removal was observed in the case of brownish Persian gum and the most yield of tannin removal belonged to soaking in water for 180 min (75.67 ± 0.25 %), using CaCl2 solution at the concentration of 1% (w/w) (74.32 ± 0.54 %) and boiling for 15 min (67.08 ± 0.19 %), respectively (p < 0.05). Based on rheological analysis, apparent viscosity of samples after soaking either in water or CaCl2 solution as well as boiling, the treatments which had the highest tannin removal yield, was higher than control sample. However, the suitable rheological model for control and the treated gums was Herschel-Bulkley, indicating that type of flow behavior did not been affected by tannin removal.

کلیدواژه‌ها English

Tannin removal
color
Native gums
soaking
Rheological properties
[1] Rahimi, S., & Abbasi, S. (2014). Characterization of some physicochemical and gelling properties of Persian gum. Innovative Food Technologies, 1 (4), 13-27.
[2] Fadavi, G., Mohammadifar, M. A., Zargarran, A., Mortazavian, A. M., & Komeili, R. (2014). Composition and physicochemical properties of Zedo gum exudates from Amygdalus scoparia. Carbohydrate Polymers, 101, 1074-1080.
[3] Abbasi, S. (2017). Challenges towards characterization and applications of a novel hydrocolloid: Persian gum. Current Opinion in Colloid & Interface Science, 28, 37-45.
[4] Rauser, W. E. (1999). Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys, 31(1), 19-48.
[5] McDonald, M., Mila, I., and Scalbert, A. (1996). Precipitation of Metal Ions by Plant Polyphenols:  Optimal Conditions and Origin of Precipitation. Journal of Agricultural and Food Chemistry, 44(2), 599-606.
[6] Abbasi, S., and Mohammadi, S. (2013). Stabilization of milk–orange juice mixture using Persian gum: Efficiency and mechanism. Food Bioscience, 2, 53-60.
[7] Azarikia, F., & Abbasi, S. (2016). Mechanism of soluble complex formation of milk proteins with native gums (tragacanth and Persian gum). Food Hydrocolloids, 59, 35-44.
[8] Teimouri, S., Abbasi, S., and Scanlon, M. (2017). Stabilisation mechanism of various inulins and hydrocolloids: Milk-sour cherry juice mixture. International Journal of Dairy Technology, 71(1), 208-215.
[9] Sharma, N. K., Beniwal, V., Kumar, N., Kumar, S., Pathera, A. K., & Ray, A. (2014). Production of tannase under solid-state fermentation and its application in detannification of guava juice. Preparative Biochemistry and Biotechnology, 44 (3), 281-290.
[10] Ashok, P. K., & Upadhyaya, K. (2012). Tannins are Astringent. Journal of Pharmacognosy and Phytochemistry, 3 (1), 45-50.
[11] Hagerman, A. E., & Butler, L. G. (1989). Choosing appropriate methods and standards for assaying tannin. Journal of Chemical Ecology, 15 (6), 1795-1810.
[12] Bromand, F., Ghoreyshi, S. M., Karegar, S., & Fazayeli, M. Study on application of tannin features. 3rd international conference on applied research in science and engineering, 5th January, (2019).
[13] Rahate, K. A., Madhumita, M., & Prabhakar, P. K. (2021). Nutritional composition, antinutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review, LWT-Food Science and Technology, 138, 110796.
[14] Sharma, K., Kumar, V., Kaur, J., Tanwar, B., Goyal, A., Sharma, R., Gat, Y., & Kumar, A. (2019). Health effects, sources, utilization and safety of tannins: a critical review, Toxin Review, 1-13.
[15] Amalraj, A., & Pius, A. (2015). Influence of oxalate, phytate, tannin, dietary fiber, and cooking on calcium bioavailability of commonly consumed cereals and millets in India. Cereal Chemistry, 92 (4), 389-394.
[16] Olawoye, B. T., & Gbadamosi, S. O. (2017). Effect of different treatments on in vitro protein digestibility, antinutrients, antioxidant properties and mineral composition of Amaranthus viridis seed. Cogent Food & Agriculture, 3 (1), 1296402.
[17] Mittal, R., Nagi, H. P. S., Sharma, P., & Sharma, S. (2012). Effect of Processing on Chemical Composition and Antinutritional Factors in Chickpea Flour. Journal of Food Science and Engineering, 2, 180-186.
[18] El-Geddawy M. A. U., Sorour, M. A., Abou-El-Hawa, S. H., & Taha, E. M. M. (2019). Effect of domestic processing and microwave heating on phenolic compounds and tannins in some oil seeds. SVU-International Journal of Agricultural Science, 1 (2), 23-32.
[19] Adegunwa, M. O., Adebowale, A. A., Bakare, H. A., and Kalejaiye, K. K. 2014. Effects of treatments on the antinutritional factors and functional properties of bambara groundnut (Voandzeia Subterranea) flour. Journal of Food Processing and Preservation; 38 (4): 1875-1881.
[20] Das, I., Sasmal, S., & Arora, A. (2021). Effect of thermal and non-thermal processing on astringency reduction and nutrient retention in cashew apple fruit and its juice. Journal of Food Science and Technology, 58 (6), 2337-2348.
[21] Ghahfarokhi, M. G., Malami, Mahoonak, A. S., Ghorbani, M., & Azizi, M. (2012a). Effect of soaking in water, alkali and acetic acid to remove polyphenol from kernel of two Iranian acorn varieties. The Iranian Food Science and Technology Research Journal, 7 (1), 50-59.
[22] Ghahfarokhi, M. G., Malami, Mahoonak, A. S., Ghorbani, M., & Azizi, M. (2012b). Chemical composition and effect of thermal processing methods on polyphenol content of two Iranian acorn varieties. Journal of Food Research (Agricultural Science), 21 (4), 421.
[23] Sharma, A. (2021). A review on traditional technology and safety challenges with regard to antinutrients in legume foods. Journal of Food Science and Technology, 58 (8), 2863-2883.
[24] Niu, F., Kou, M., Fan, J., Pan, W., Feng, Z. J., Su, Y., Yang, Y., & Zhou, W. (2018). Structural characteristics and rheological properties of ovalbumin-gum arabic complex coacervates. Food Chemistry, 260, 1-6.
[25] Postulkova, H., Chamradova, I., Pavlinak, D., Humpa, O., Jancar, J., & Vojtova, L. (2017). Study of effects and conditions on the solubility of natural polysaccharide gum karaya. Food Hydrocolloids, 67, 148-156.
[26] Ibrahim, A., Yaser, A. Z., & Lamaming, J. (2021). Synthesising tannin-based coagulants for water and wastewater application: A review. Journal of Environmental Chemical Engineering, 9 (1), 105007.
[27] Kaspchak, E., Goedert, A. C., Igarashi-Mafra, L., & Mafra, M. R. (2019). Effect of divalent cations on bovine serum albumin (BSA) and tannic acid interaction and its influence on turbidity and in vitro protein digestibility. International Journal of Biological Macromolecules, 136, 486-492.
[28] Salehi, F., Kashaninejad, M., & Behshad, V. (2014). Effect of sugars and salts on rheological properties of Balangu seed (Lallemantia royleana) gum. International Journal of Biological Macromolecules, 67, 16-21.
[29] Hosseini, E., Mozafari, H., Hojjatoleslamy, M., & Rousta, E. (2017). Influence of temperature, pH and salts on rheological properties of bitter almond gum. Food Science and Technology, 37 (3): 437-443.
[30] Abedi, E., Majzoobi, M., Farahnaky, A., Pourmohammadi, K., & Mahmoudi, M. R. (2018). Effect of ionic strength (NaCl and CaCl2) on functional, textural and electrophoretic properties of native and acetylated gluten, gliadin and glutenin. International Journal of Biological Macromolecules, 120, 2035-2047.
[31] Yousefi, A., Khodabakhshaghdam, S., Razavi, S. M. A., Tavakoli, J., & Hosseinzadeh, G. (2021). Time-dependent (thixotropic) rheological behavior of sage seed gum in the presence of some salts and sugars. Innovative Food Technologies, 8 (2), 235-252.
[32] Hedayati, S., Majzoobi, M., Shahidi, F., Koocheki, A., & Farahnaky, A. (2016). Effects of NaCl and CaCl2 on physicochemical properties of pregelatinized and granular cold-water swelling corn starches. Food Chemistry, 213, 602-608.
[33] Thombare, N., Jha, U., Mishra, S., & Siddiqui, M. (2016). Guar Gum as a Promising Starting Material for Diverse Applications: A Review. International Journal of Biological Macromolecules, 88, 361-72.
[34] Sun, C., Zhu, S., Xu, S., Liu, M., Wu, J., & Bai, B. (2021). Molecular physics in ion-bridging effect for wettability alteration of rock surfaces. Chemical Physics Letters, 763, 138201.
[35] Azarikia, F., & Abdanan Mehdizadeh, S. (2022). Extending shelf life of noughl by modifying relative humidity of the container: Study of physicochemical and textural properties. Research and Innovation in Food Science and Technology, 11(3), 233-246.
[36] Mashitoa, F. M., Manhivi, V., Slabbert, R. M., Shai, J. L., & Sivakumar, D. (2021). Changes in antinutrients, phenolics, antioxidant activities and in vitro α-glucosidase inhibitory activity in pumpkin leaves (Cucurbita moschata) during different domestic cooking methods. Food Science and Biotechnol, 30 (6), 793-800.
[37] Kataria, A., Sharma, S. & Dar, B. N. (2021). Changes in Phenolic Compounds, Antioxidant Potential and Antinutritional Factors of Teff (Eragrostis tef) during Different Thermal Processing Methods. International Journal of Food Science and Technology, 57 (11), 6893-6902.
[38] Xu, Y., Cartier, A., Obielodan, M., Jordan, K., Hairston, T., Shannon, A., & E. Sismour, E. (2016). Nutritional and anti-nutritional composition, and in vitro protein digestibility of Kabuli chickpea (Cicer arietinum L.) as affected by differential processing methods. Journal of Food Measurement and Characterization, 10 (3), 625-633.
[39] Khattab, R. Y., & Arntfield, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT-Food Science and Technology, 42 (6), 1113-1118.
[40] Asokapandian, S., Swamy, G. J, & Hajjul, H. (2019). Deep fat frying of foods: A critical review on process and product parameters. Critical Reviews in Food Science and Nutrition, 60 (20), 3400-3413.
[41] Sharma, S., Singh, A., Sharma, U., Kumar, R., & Yadav, N. (2017). Effect of thermal processing on antinutritional factors and in vitro bioavailability of minerals in desi and kabuli cultivars of chick pea grown in North India. Legume Research-An International Journal, 41 (2), 267-274.
[42] Mustafa, A., Abouelenein, D., Acquaticci, L., Alessandroni, L., Abd-Allah, R., Borsetta, G., Sagratini, G., Maggi, F., Vittori, S., & Caprioli, G. (2021). Effect of Roasting, Boiling, and Frying Processing on 29 Polyphenolics and Antioxidant Activity in Seeds and Shells of Sweet Chestnut (Castanea sativa Mill.). Plants, 10 (10), 2192.
[43] Zameni, A., Kashaninejad, M., Aalami, M., & Salehi, F. (2014). Effect of thermal and freezing treatments on rheological, textural and color properties of basil seed gum. Journal of Food Science and Technology, 52 (9), 5914-5921.
[44] Salehi, F., & Kashaninejad, M. (2017). Effect of drying methods on textural and rheological properties of basil seed gum. International Food Research Journal, 24 (5), 2090-2096.
[45] Sherahi, M. H., Shadaei, M., Ghobadi, E., Zhandari, F., Rastgou, Z., & Hashemi, S. M. B. (2018). Effect of temperature, ion type and ionic strength on dynamic viscoelastic, steady-state and dilute-solution properties of Descurainia sophia seed gum. Food Hydrocolloids, 79, 81-89.
[46] Iqbal, J. M., Akbar, W. M., & Aftab, M. R. (2019). Heat and mass transfer modeling for fruit drying: a review. MOJ Food Process & Technology, 7, 69-73.
[47] Xiang, Y., Liu, Y., Mi, B., & Leng, Y. (2014). Molecular dynamics simulations of polyamide membrane, calcium alginate gel, and their interactions in aqueous solution. Langmuir, 30 (30), 9098-9106.
[48] Dabestani, M., Kadkhodaee, R., Phillips, G., & Abbasi, S. (2018). Persian gum: A comprehensive review on its physicochemical and functional properties. Food Hydrocolloids, 78, 92-99.
[49] Bu, X., Pei, J., Zhang, F., Liu, H., Zhou, Z., Zhen, X., Wang, J., Zhang, X., & Chan, H. (2018). The hydration mechanism and hydrogen bonding structure of 6-carboxylate chitooligosaccharides superabsorbent material prepared by laccase/TEMPO oxidation system. Carbohydrate Polymers, 188, 151-158.
[50] Khalesi, H., Alizadeh, M., & Rezazad Bari, M. (2012). Physicochemical and functional properties of Zedo gum exudating from Amygdalus scoparia Spach trees in the Miyan Jangal area of the Fars province. Iranian Food Science and Technology Research Journal, 8 (3), 317–326.
[51] Mudgil, D., Barak, S., & Khatkar, B. S. (2014). Guar gum: processing, properties and food applications- a review. Journal of Food Science and Technology, 51 (3), 409-18.
[52] Teleszko, M., Nowicka, P., & Wojdyło, A. (2016). Effect of cultivar and storage temperature on identification and stability of polyphenols in strawberry cloudy juices. Journal of Food Composition and Analysis, 54, 10-19.
[53] Zhao, F., Guo, Y., Zhou, X., Shi, W., & Yu, G. (2020). Materials for solar-powered water evaporation. Nature Reviews Materials, 5 (5), 388-401.
[54] Xu, T., Han, Q., Cheng, Z., Zhang, J., & Qu, L. (2018). Interactions between Graphene‐Based Materials and Water Molecules toward Actuator and Electricity‐Generator Applications. Small Methods, 2 (10), 1800108.
[55] Mostafavi, F. S., Kadkhodai, R., Emadzade, B., & Koochaki, A. (2016). Evaluating Rheological Behaviour of Tragacanth Gum Blend with QodoumeShirazi, Farsi and Locust Bean Gums. Journal of food science and technology, 14 (63), 141-129.
[56] Srichamroen, A. (2007). Influence of Temperature and Salt on Viscosity Property of Guar Gum. Naresuan University Journal, 15 (2), 55-62.
[57] Samutsri, W., & Suphantharika, M. (2012). Effect of salts on pasting, thermal, and rheological properties of rice starch in the presence of non-ionic and ionic hydrocolloids. Carbohydrate Polymers, 87 (2), 1559-1568.
[58] Azarikia, F., & Abbasi, S. (2010). On the stabilization mechanism of Doogh (Iranian yoghurt drink) by gum tragacanth. Food Hydrocolloids, 24, 358-363.
[59] Reinoso, D., Martín-Alfonso, M. J., Luckham, P. F., & Martínez-Boza, F. J. (2019). Rheological characterisation of xanthan gum in brine solutions at high temperature. Carbohydrate Polymers, 203, 103-109.
[60] Amini Rastabi, J., & Nasirpour, A. (2017). Comparison of Some Physicochemical and Functional Properties of Farsi Gum and Other Rosaceae Plant Gum Exudates. Journal of Science and Engineering Elites, 2 (1), 110-118.
[61] Zhong, L., Oostrom, M., Truex, M. J., Vermeul, V. R., & Szecsody, J. E. (2013). Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. Journal of Hazardous Materials, 244-245, 160-170.
[62] Torres, M. D., Hallmark, B., & Wilson, D. I. (2014). Effect of concentration on shear and extensional rheology of guar gum solutions. Food Hydrocolloids, 40, 85-95.
[63] Vieira, J. M., Mantovani, R. A., Raposo, M. F. J., Coimbra, M. A., Vicente, A. A., & Cunha, R. L. (2019). Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohydrate Polymers, 213, 217-227.
[64] Forget, A., Christensen, J., Lüdeke, S., Kohler, E., Tobias, S., Matloubi, M., Thomann, R., & Shastri, V. P. (2013). Polysaccharide hydrogels with tunable stiffness and provasculogenic properties via α-helix to β-sheet switch in secondary structure. Proceedings of the National Academy of Sciences of the United States of America, 110 (32), 12887-12892.