بررسی اثر لاکتوفرین آزاد و نانولیپوزومی بر بیوفیلم پلی میکروبی مشتق شده از بزاق در مدل Active Attachment biofilm

نویسندگان
1 دانشجو دکتری صنایع غذایی دانشگاه فردوسی
2 استاد دانشگاه فردوسی
3 استاد دانشگاه علوم پزشکی ایران
چکیده
پوسیدگی دندان از مشکلات رایج در دنیا می‌باشد که ناشی از رشد بیوفیلم پوسیدگی‌زا وتولید اسید توسط آنان است. برای حل این مشکل راهکارهای متعددی به کار گرفته شده‌است. اما به دلیل افزایش مقاومت آنتی‌بیوتیکی میکروارگانیسم‌ها و نیاز روز افزون به مواد ضد میکروبی تلاش برای استفاده از مواد مواد ضدمیکروبی طبیعی ادامه دارد. لاکتوفرین یک پروتئین در شیر و بزاق است که خواص ضد میکروبی و ضد بیوفیلمی نشان داده‌است. در این تحقیق ابتدا برای افزایش ویژگی‌ها ضد میکروبی، لاکتوفرین به وسیله نانولیپوزوم ریزپوشانی ‌شد. سپس جهت سنجش تأثیر آن بر تعداد باکتری در بیوفیلم پلی میکروبی و تولید اسید، هریک از مواد آزاد یا نانولیپوزومی در4 غلظت (0, 1.5, 3, 6 میلی گرم بر میلی لیتر) در مدل Active Attachment biofilm به همراه بزاق و محیط کشت گرمخانه گذاری شد. نتایج نشان داد که نانوریزپوشانی لاکتوفرین به دلیل رهایش آهسته لاکتوفرین از لیپوزوم‌ها توانایی مهار بیوفیلم و تولید اسید توسط این باکتری را افزایش داد. تبا افزایش غلظت لاکتوفرین آزاد و نانولیپوزومی تا غلظت 3 میلی گرم بر میلی لیتر کاهش قابل توجهی در تعداد باکتری ها در بیوفیلم نسبت به نمونه شاهد مشاهده شد (01/0< P). اما افزایش بیشتر غلظت لاکتوفرین آزاد موجب افزایش مجدد تعداد باکتری ها در بیوفیلم شد. این درحالیست که لاکتوفرین نانولیپوزومی در غلظت 6 میلی گرم بر میلی لیتر همچنان باعث کاهش باکتری در بیوفیلم شد که این کاهش نسبت به غلظت 3میلی گرم بر میلی لیتر معنی دار نبود (01/0> P). از نتایج بدست آمده می‌توان نتیجه گرفت که از لاکتوفرین نانولیپوزومی می توان جهت طراحی محصولات مرتبط با سلامت دهان و دندان استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the effect of free and nanoliposomal lactoferrin on polymicrobial biofilms derived from saliva in an Active Attachment biofilm model

نویسندگان English

Parisa Habibi 1
farideh tabatabaei yazdi 2
Seyyed Ali Mortazavi 2
Mohammad Morad Farajollahi 3
1 Ph.D. student of Ferdowsi University
2 Professor of Ferdowsi university
3 Professor of Iran University of Medical Sciences
چکیده English

Tooth decay is one of the most common problems in the world, which is caused by the growth of biofilm and acid production by them. Many solutions have been used to solve this problem. However, due to the increase in antibiotic resistance of microorganisms and the increasing need for antimicrobial substances, efforts are being made to use natural antimicrobial substances. Lactoferrin is a protein in milk and saliva with antimicrobial and anti-biofilm properties. In this research, lactoferrin was encapsulated by nanoliposomes to increase its antimicrobial properties. In order to measure the effect of lactoferrin on the number of bacteria in the polymicrobial biofilm and acid production, each of the free substances or nanoliposomes in 4 concentrations (0, 1.5, 3, 6 mg/ml) in the Active Attachment biofilm model with saliva and culture medium was incubated.

The results showed that lactoferrin nanocoating increased the ability to inhibit biofilm and acid production by this bacterium due to the slow release of lactoferrin from liposomes. When increasing the concentration of free and nanoliposomal lactoferrin to a concentration of 3 mg/ml, a significant decrease in the number of bacteria in the biofilm was observed compared to the control sample (P<0.01). However, increasing the concentration of free lactoferrin again increased the number of bacteria in the biofilm. Meanwhile, nanoliposomal lactoferrin at a concentration of 6 mg/ml still caused a decrease in bacteria in the biofilm, which was insignificant compared to the concentration of 3 mg/ml (P>0.01). From the obtained results, it can be concluded that nanoliposomal lactoferrin can be used to design products related to oral and dental health.

کلیدواژه‌ها English

Lactoferrin
Nanoliposome
Polymicrobial biofilm
Tooth decay
Amissah, F., T. Andey, and K.M. Ahlschwede, Nanotechnology-based therapies for the prevention and treatment of Streptococcus mutans-derived dental caries. Journal of Oral Biosciences, 2021. 63(4): p. 327-336.
2. Dewhirst, F.E., et al., The human oral microbiome. Journal of bacteriology, 2010. 192(19): p. 5002-5017.
3. Scharnow, A.M., A.E. Solinski, and W.M. Wuest, Targeting S. mutans biofilms: a perspective on preventing dental caries. MedChemComm, 2019. 10(7): p. 1057-1067.
4. Donlan, R.M., Biofilms: microbial life on surfaces. Emerging infectious diseases, 2002. 8(9): p. 881.
5. Jamal, M., et al., Bacterial Biofilm: Its Composition. Formation and Role in Human Infections Research & Reviews: Journal of Microbiology and Biotechnology, 2015. 4: p. 1-14.
6. Rosa, L., et al., Lactoferrin and oral pathologies: a therapeutic treatment. Biochemistry and Cell Biology, 2021. 99(1): p. 81-90.
7. Lemos, J., et al., The biology of Streptococcus mutans. Microbiology spectrum, 2019. 7(1): p. 7.1. 03.
8. Lemos, J.A. and R.A. Burne, A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology (Reading, England), 2008. 154(Pt 11): p. 3247.
9. Gilbert, J.A., et al., Current understanding of the human microbiome. Nature medicine, 2018. 24(4): p. 392-400.
10. Kandimalla, K.K., et al., Ability of chitosan gels to disrupt bacterial biofilms and their applications in the treatment of bacterial vaginosis. Journal of Pharmaceutical Sciences, 2013. 102(7): p. 2096-2101.
11. Krupińska, A.M. and Z. Bogucki, Clinical aspects of the use of lactoferrin in dentistry. Journal of Oral Biosciences, 2021. 63(2): p. 129-133.
12. Leitch, E. and M. Willcox, Elucidation of the antistaphylococcal action of lactoferrin and lysozyme. Journal of Medical Microbiology, 1999. 48(9): p. 867-871.
13. Pedersen, A.M.L. and D. Belstrøm, The role of natural salivary defences in maintaining a healthy oral microbiota. Journal of dentistry, 2019. 80: p. S3-S12.
14. Oho, T., et al., A peptide domain of bovine milk lactoferrin inhibits the interaction between streptococcal surface protein antigen and a salivary agglutinin peptide domain. Infection and immunity, 2004. 72(10): p. 6181-6184.
15. Bjarnsholt, T., et al., Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology, 2005. 151(2): p. 373-383.
16. Ceri, H., et al., The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of clinical microbiology, 1999. 37(6): p. 1771-1776.
17. Donlan, R.M. and J.W. Costerton, Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews, 2002. 15(2): p. 167-193.
18. Tenover, F.C., Mechanisms of antimicrobial resistance in bacteria. The American journal of medicine, 2006. 119(6): p. S3-S10.
19. Burmølle, M., et al., Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Applied and environmental microbiology, 2006. 72(6): p. 3916-3923.
20. Kara, D., S.B. Luppens, and J.M. ten Cate, Differences between single‐and dual‐species biofilms of Streptococcus mutans and Veillonella parvula in growth, acidogenicity and susceptibility to chlorhexidine. European journal of oral sciences, 2006. 114(1): p. 58-63.
21. Luppens, S., et al., Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual‐species biofilm. Oral microbiology and immunology, 2008. 23(3): p. 183-189.
22. Ramsey, M.M. and M. Whiteley, Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proceedings of the National Academy of Sciences, 2009. 106(5): p. 1578-1583.
23. Pamunuwa, G., V. Karunaratne, and D. Karunaratne, Effect of lipid composition on in vitro release and skin deposition of curcumin encapsulated liposomes. Journal of Nanomaterials, 2016. 2016.
24. Cacciotti, I., et al., Application of nano/microencapsulated ingredients in chewing gum, in Application of Nano/Microencapsulated Ingredients in Food Products. 2021, Elsevier. p. 345-386.
25. Dera, M.W. and W.B. Teseme, Review on the application of food nanotechnology in food processing. Am. J. Eng. Technol. Manag, 2020. 5: p. 41-47.
26. Bonifacio, B.V., et al., Nanotechnology-based drug delivery systems and herbal medicines: a review. International journal of nanomedicine, 2014. 9: p. 1.
27. Liu, W., et al., Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. Journal of Dairy Science, 2013. 96(4): p. 2061-2070.
28. Rasti, B., et al., Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food chemistry, 2012. 135(4): p. 2761-2770.
29. Habibi, P., et al., Effects of free and nano‐encapsulated bovine lactoferrin on the viability and acid production by Streptococcus mutans biofilms. Letters in Applied Microbiology, 2022. 75(3): p. 689-698.
30. Vergara, D. and C. Shene, Encapsulation of lactoferrin into rapeseed phospholipids based liposomes: Optimization and physicochemical characterization. Journal of Food Engineering, 2019. 262: p. 29-38.
31. Exterkate, R., W. Crielaard, and J. Ten Cate, Different response to amine fluoride by Streptococcus mutans and polymicrobial biofilms in a novel high-throughput active attachment model. Caries research, 2010. 44(4): p. 372-379.
32. McBain, A., et al., Development and characterization of a simple perfused oral microcosm. Journal of Applied Microbiology, 2005. 98(3): p. 624-634.
33. Van Loveren, C., J. Buijs, and J. Ten Cate, The effect of triclosan toothpaste on enamel demineralization in a bacterial demineralization model. Journal of Antimicrobial Chemotherapy, 2000. 45(2): p. 153-158.
34. Silva, T.C., et al., Application of an active attachment model as a high-throughput demineralization biofilm model. Journal of dentistry, 2012. 40(1): p. 41-47.
35. Consortium, H.M.P., Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. Structure, function and diversity of the healthy human microbiome. Nature, 2012. 486(7402): p. 207-14.
36. Mark-Welsh, J., et al., Biogeography of a human oral microbiome at the micro scale. Proc. Natl. Acad. Sci. USA, 2016. 113: p. E791-E800.
37. Visca, P., et al., Growth and adsorption of Streptococcus mutans 6715-13 to hydroxyapatite in the presence of lactoferrin. Medical microbiology and immunology, 1989. 178(2): p. 69-79.
38. Oho, T., M. Mitoma, and T. Koga, Functional domain of bovine milk lactoferrin which inhibits the adherence of Streptococcus mutans cells to a salivary film. Infection and immunity, 2002. 70(9): p. 5279-5282.
39. Rosa, L., et al., Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. International journal of molecular sciences, 2017. 18(9): p. 1985.
40. Longhi, C., et al., Influence of lactoferrin on the entry process of Escherichia coli HB101 (pRI203) in HeLa cells. Medical microbiology and immunology, 1993. 182(1): p. 25-35.
41. Dalmastri, C., et al., Enhanced antimicrobial activity of lactoferrin by binding to the bacterial surface. Microbiologica, 1988. 11(3): p. 225-230.
42. Williams, T.J., R.P. Schneider, and M.D. Willcox, The effect of protein-coated contact lenses on the adhesion and viability of gram negative bacteria. Current eye research, 2003. 27(4): p. 227-235.
43. Kawasaki, Y., et al., Inhibitory effects of bovine lactoferrin on the adherence of enterotoxigenic Escherichia coli to host cells. Bioscience, biotechnology, and biochemistry, 2000. 64(2): p. 348-354.
44. Dial, E.J. and L.M. Lichtenberger, Effect of lactoferrin on Helicobacter felis induced gastritis. Biochemistry and cell biology, 2002. 80(1): p. 113-117.
45. Lu, J., et al., Lactoferrin: a critical mediator of both host immune response and antimicrobial activity in response to streptococcal infections. ACS infectious diseases, 2020. 6(7): p. 1615-1623.
46. Ochoa, T.J., et al., Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli. Infection and immunity, 2003. 71(9): p. 5149-5155.