Amissah, F., T. Andey, and K.M. Ahlschwede, Nanotechnology-based therapies for the prevention and treatment of Streptococcus mutans-derived dental caries. Journal of Oral Biosciences, 2021. 63(4): p. 327-336.
2. Dewhirst, F.E., et al., The human oral microbiome. Journal of bacteriology, 2010. 192(19): p. 5002-5017.
3. Scharnow, A.M., A.E. Solinski, and W.M. Wuest, Targeting S. mutans biofilms: a perspective on preventing dental caries. MedChemComm, 2019. 10(7): p. 1057-1067.
4. Donlan, R.M., Biofilms: microbial life on surfaces. Emerging infectious diseases, 2002. 8(9): p. 881.
5. Jamal, M., et al., Bacterial Biofilm: Its Composition. Formation and Role in Human Infections Research & Reviews: Journal of Microbiology and Biotechnology, 2015. 4: p. 1-14.
6. Rosa, L., et al., Lactoferrin and oral pathologies: a therapeutic treatment. Biochemistry and Cell Biology, 2021. 99(1): p. 81-90.
7. Lemos, J., et al., The biology of Streptococcus mutans. Microbiology spectrum, 2019. 7(1): p. 7.1. 03.
8. Lemos, J.A. and R.A. Burne, A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology (Reading, England), 2008. 154(Pt 11): p. 3247.
9. Gilbert, J.A., et al., Current understanding of the human microbiome. Nature medicine, 2018. 24(4): p. 392-400.
10. Kandimalla, K.K., et al., Ability of chitosan gels to disrupt bacterial biofilms and their applications in the treatment of bacterial vaginosis. Journal of Pharmaceutical Sciences, 2013. 102(7): p. 2096-2101.
11. Krupińska, A.M. and Z. Bogucki, Clinical aspects of the use of lactoferrin in dentistry. Journal of Oral Biosciences, 2021. 63(2): p. 129-133.
12. Leitch, E. and M. Willcox, Elucidation of the antistaphylococcal action of lactoferrin and lysozyme. Journal of Medical Microbiology, 1999. 48(9): p. 867-871.
13. Pedersen, A.M.L. and D. Belstrøm, The role of natural salivary defences in maintaining a healthy oral microbiota. Journal of dentistry, 2019. 80: p. S3-S12.
14. Oho, T., et al., A peptide domain of bovine milk lactoferrin inhibits the interaction between streptococcal surface protein antigen and a salivary agglutinin peptide domain. Infection and immunity, 2004. 72(10): p. 6181-6184.
15. Bjarnsholt, T., et al., Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology, 2005. 151(2): p. 373-383.
16. Ceri, H., et al., The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of clinical microbiology, 1999. 37(6): p. 1771-1776.
17. Donlan, R.M. and J.W. Costerton, Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews, 2002. 15(2): p. 167-193.
18. Tenover, F.C., Mechanisms of antimicrobial resistance in bacteria. The American journal of medicine, 2006. 119(6): p. S3-S10.
19. Burmølle, M., et al., Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Applied and environmental microbiology, 2006. 72(6): p. 3916-3923.
20. Kara, D., S.B. Luppens, and J.M. ten Cate, Differences between single‐and dual‐species biofilms of Streptococcus mutans and Veillonella parvula in growth, acidogenicity and susceptibility to chlorhexidine. European journal of oral sciences, 2006. 114(1): p. 58-63.
21. Luppens, S., et al., Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual‐species biofilm. Oral microbiology and immunology, 2008. 23(3): p. 183-189.
22. Ramsey, M.M. and M. Whiteley, Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proceedings of the National Academy of Sciences, 2009. 106(5): p. 1578-1583.
23. Pamunuwa, G., V. Karunaratne, and D. Karunaratne, Effect of lipid composition on in vitro release and skin deposition of curcumin encapsulated liposomes. Journal of Nanomaterials, 2016. 2016.
24. Cacciotti, I., et al., Application of nano/microencapsulated ingredients in chewing gum, in Application of Nano/Microencapsulated Ingredients in Food Products. 2021, Elsevier. p. 345-386.
25. Dera, M.W. and W.B. Teseme, Review on the application of food nanotechnology in food processing. Am. J. Eng. Technol. Manag, 2020. 5: p. 41-47.
26. Bonifacio, B.V., et al., Nanotechnology-based drug delivery systems and herbal medicines: a review. International journal of nanomedicine, 2014. 9: p. 1.
27. Liu, W., et al., Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. Journal of Dairy Science, 2013. 96(4): p. 2061-2070.
28. Rasti, B., et al., Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food chemistry, 2012. 135(4): p. 2761-2770.
29. Habibi, P., et al., Effects of free and nano‐encapsulated bovine lactoferrin on the viability and acid production by Streptococcus mutans biofilms. Letters in Applied Microbiology, 2022. 75(3): p. 689-698.
30. Vergara, D. and C. Shene, Encapsulation of lactoferrin into rapeseed phospholipids based liposomes: Optimization and physicochemical characterization. Journal of Food Engineering, 2019. 262: p. 29-38.
31. Exterkate, R., W. Crielaard, and J. Ten Cate, Different response to amine fluoride by Streptococcus mutans and polymicrobial biofilms in a novel high-throughput active attachment model. Caries research, 2010. 44(4): p. 372-379.
32. McBain, A., et al., Development and characterization of a simple perfused oral microcosm. Journal of Applied Microbiology, 2005. 98(3): p. 624-634.
33. Van Loveren, C., J. Buijs, and J. Ten Cate, The effect of triclosan toothpaste on enamel demineralization in a bacterial demineralization model. Journal of Antimicrobial Chemotherapy, 2000. 45(2): p. 153-158.
34. Silva, T.C., et al., Application of an active attachment model as a high-throughput demineralization biofilm model. Journal of dentistry, 2012. 40(1): p. 41-47.
35. Consortium, H.M.P., Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. Structure, function and diversity of the healthy human microbiome. Nature, 2012. 486(7402): p. 207-14.
36. Mark-Welsh, J., et al., Biogeography of a human oral microbiome at the micro scale. Proc. Natl. Acad. Sci. USA, 2016. 113: p. E791-E800.
37. Visca, P., et al., Growth and adsorption of Streptococcus mutans 6715-13 to hydroxyapatite in the presence of lactoferrin. Medical microbiology and immunology, 1989. 178(2): p. 69-79.
38. Oho, T., M. Mitoma, and T. Koga, Functional domain of bovine milk lactoferrin which inhibits the adherence of Streptococcus mutans cells to a salivary film. Infection and immunity, 2002. 70(9): p. 5279-5282.
39. Rosa, L., et al., Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. International journal of molecular sciences, 2017. 18(9): p. 1985.
40. Longhi, C., et al., Influence of lactoferrin on the entry process of Escherichia coli HB101 (pRI203) in HeLa cells. Medical microbiology and immunology, 1993. 182(1): p. 25-35.
41. Dalmastri, C., et al., Enhanced antimicrobial activity of lactoferrin by binding to the bacterial surface. Microbiologica, 1988. 11(3): p. 225-230.
42. Williams, T.J., R.P. Schneider, and M.D. Willcox, The effect of protein-coated contact lenses on the adhesion and viability of gram negative bacteria. Current eye research, 2003. 27(4): p. 227-235.
43. Kawasaki, Y., et al., Inhibitory effects of bovine lactoferrin on the adherence of enterotoxigenic Escherichia coli to host cells. Bioscience, biotechnology, and biochemistry, 2000. 64(2): p. 348-354.
44. Dial, E.J. and L.M. Lichtenberger, Effect of lactoferrin on Helicobacter felis induced gastritis. Biochemistry and cell biology, 2002. 80(1): p. 113-117.
45. Lu, J., et al., Lactoferrin: a critical mediator of both host immune response and antimicrobial activity in response to streptococcal infections. ACS infectious diseases, 2020. 6(7): p. 1615-1623.
46. Ochoa, T.J., et al., Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli. Infection and immunity, 2003. 71(9): p. 5149-5155.