[1] Hosseini, F and Akbari, I. (2017). Microbial toxins. University Jihad Publications, pp:116-123, [in Persian].
[2] Saadat, Y.R., Khosroushahi, A.Y. and Gargari, B.P., 2019. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteriaexopolysaccharides. Carbohydrate polymers, 217, pp.79-89.
[3] Zajšek, K., Goršek, A. and Kolar, M., 2013. Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains. Food chemistry, 139(1-4), pp.970-977.
[4] Jeong, D., Kim, D.H., Kang, I.B., Kim, H., Song, K.Y., Kim, H.S. and Seo, K.H., 2017. Characterization and antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciensDN1 isolated from kefir. Food Control, 78, pp.436-442.
[5] Ruas-Madiedo, P., 2014. Biosynthesis and bioactivity of exopolysaccharides produced by probiotic bacteria. Food Oligosaccharides, pp.118-133.
[6] Ruas‐Madiedo, P., Medrano, M., Salazar, N., De Los Reyes‐Gavilán, C.G., Pérez, P.F. and Abraham, A.G., 2010. Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells. Journal of applied microbiology, 109(6), pp.2079-2086.
[7] Kim, J.U., Kim, Y., Han, K.S., Oh, S., Whang, K.Y., Kim, J.N. and Kim, S.H., 2006. Function of cell-bound and released exopolysaccharides produced by Lactobacillus rhamnosus ATCC 9595. Journal of microbiology and biotechnology, 16(6), pp.939-945.
[8] Hidalgo-Cantabrana, C., Sánchez, B., Milani, C., Ventura, M., Margolles, A. and Ruas-Madiedo, P., 2014. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Applied and Environmental Microbiology., 80(1), pp.9-18.
[9] Hidalgo-Cantabrana, C., López, P., Gueimonde, M., Clara, G., Suárez, A., Margolles, A. and Ruas-Madiedo, P., 2012. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics and Antimicrobial Proteins, 4(4), pp.227-237.
[10] Ghosh, A.K. and Bandyopadhyay, P., 2012. Polysaccharide-protein interactions and their relevance in food colloids. The complex world of polysaccharides, 14, pp.395-406.
[11] Fathi, F., Sharifi, M., Jafari, A., Kakavandi, N., Kashanian, S., Dolatabadi, J.E.N. and Rashidi, M.R., 2019. Kinetic and thermodynamic insights into interaction of albumin with piperacillin: Spectroscopic and molecular modeling approaches. Journal of Molecular Liquids, 296, p.111770.
[12] Dehghani, M., Jalal, R. and Rashidi, M.R., 2021. Kinetic and thermodynamic insights into the interaction of Aβ1–42 with astaxanthin and aggregation behavior of Aβ1–42: Surface plasmon resonance, microscopic, and molecular docking studies. Biophysical Chemistry, 275, p.106612.
[13] Jiménez-Vargas, J.M., Ramírez-Carreto, S., Corzo, G., Possani, L.D., Becerril, B. and Ortiz, E., 2021. Structural and functional characterization of NDBP-4 family antimicrobial peptides from the scorpion Mesomexovis variegatus. Peptides, 141, p.170553.
[14] Heggelund, J.E., Heim, J.B., Bajc, G., Hodnik, V., Anderluh, G. and Krengel, U., 2019. Specificity of Escherichia coli heat-labile enterotoxin investigated by single-site mutagenesis and crystallography. International journal of molecular sciences, 20(3), p.703.