تعیین مدل مناسب سینتیک خشک کردن پیاز قرمز و مقایسه مدل‌های ریاضی سیستم استنتاج عصبی فازی (ANFIS)

نویسندگان
1 گروه مهندسی مکانیزاسیون کشاورزی، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 *استادیار، گروه مهندسی مکانیک بیوسیستم، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - استاد تمام، گروه مهندسی مکانیک بیوسیستم، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
در این تحقیق، سینتیک خشک کردن، تعیین ضریب نفوذ موثر رطوبت ، انرژی فعالسازی و همچنین پیش بینی نسبت رطوبـت پیاز قرمزدر طی فرآیند خشک کردن با خشک کن - هوای داغ به کمک مدل‌های ریاضی و سیستم استنتاج عصبی فازی ( ANFIS) ا نجام گرفت. خشک کردن محصول در چهارسطح دمای ۵۰ ،۶۰، ۷۰وºC ۸۰ در سرعت جریان هوای ثابت m/s ۱ انجام شد. برای انتخاب یک مدل خش کردن مناسب، دوازده مدل لایه نازک خشک کردن ، همچنین استفاده از سیستم استنتاج عصبی فازی) ( ANFIS مورد استفاده قرارگرفت برای تعیین بهترین مدل ریاضی مناسب لایه نازک از رگرسیون غیرخطی وشاخص های R2 ، x2 ، RMSE، و MRDM در نرم افزار R ویرایش ۳.۶.۲ استفاده گردید. نتایج نشان دادکه درمیان مدلهای ریاضی مدل دوجمله ای با بیشترین ضریب تبیین و کمترین مقادیر ریشه میانگین مربعات خطا مناسب ترین بود .نتایج انفیس مقدار ضریب همبستگی ) ۰.۹۹۹ = ( R2 و خطای) ۰۰۲/۰) RMSE = کمترین ریشه میانگسن مربعات خطا بهتر از مدل های ریاضی نسبت رطوبت را پیش بینی کرد . مقدار ضریب نفوذ برای چهار دما به ترتیب (۰.۰۱۸۴۷۶۶۹ و۰.۰۱۹۳۰۷۷۰و۰.۰۲۱۱۶۹۸۸و۰.۰۳۱۳۶۲۵۵) M2/S ومقدار انرژی فعالسازی ۱۸۹۰.۴ ((kJ/(kg بدست آمد .
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Determining the appropriate model of red onion drying kinetics and comparing mathematical models of Neuro-Fuzzy Inference System (ANFIS)

نویسندگان English

Maryam Karimimotlagh 1
Babak BEHESHTI 2
Ali Mohamad Borghei 3
1 Department of Agricultural Mechanization Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Assistant Professor, Department of Biosystems Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 Full Professor, Department of Biosystems Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده English

In this research , The kinetics of drying , The Determining The effective Moisture Diffusivity, Activation Energy, And also the prediction of the moisture ratio of red onion during the dry process with dryer-hot air drying were carried out with the help of mathematical models and fuzzy neural inference system (ANFIS). The experiments were performed at four levels of temperature at 50, 60, 70 and 80 0C and a constant air flow rate of 1 m/s . To select a suitable drying model, twelve thin layer drying models were used, as well as using fuzzy neural inference system R Software version 3.6.2. The results showed that among the mathematical models, The binomial model with the highest coefficient of explanation and the lowest root mean square error was the most suitable. The results of the correlation coefficient value (R2 = 0.999 and error) RMSE = ( 0.002) the lowest root mean square error It predicted the humidity ratio better than mathematical models. Effective Moisture Diffusivity for four temperatures, Respectively (0.03136255,0 0211698,00193770.001847669 0) M2/ S and The amount of activation energy was 1890.4 (kJ /(kg.K).

کلیدواژه‌ها English

Moisture diffusivity
Activation energy
Mathematical model
ANFIS
R software
Drying
[1] Arsalan D, Özcan MM. Study the effect of sun, oven and microwave drying on quality of onion slices. LWT‒Food Science and Technology. 2010; 43(7): 1121 –1127.
[2] Begherloo M, Heidari R, Ghaderpour S, Jamei R. Antioxidant activities of the methanolic extracts of several varieties of Iranian onion and theirs scavenging effect on free radicals. Journal of Food Research. 2011; 21(4): 455 -465. [full text in Persian]
[3] Mühlbauer, W. 2020. Drying Atlas: Drying Kinetics and Quality of Agricultural Products. England: Woodhead Publishing; 1st edition is an imprint of Elsevier.
[4] Wan Daud W D,. 2008. Fluidized Bed Dryers-Recent Advances. Journal of Advanced Powder Technology 19:403-418.
[5] Kaveh M, Jahanbakhshi A, golpour I, Mesri Gandshmin T, Abbaspour-Gilandeh Y, Jahedi Rad S. Prediction of white mulberry drying kinetics in microwave- convective dryer: A comparative study between mathematical model, artificial neural network and ANFIS. FSCT. 2019; 16 (88) :201-219
URL: http://fsct.modares.ac.ir/article-7-15649-fa.html

[6] Ganjeh, M., Jafari, S.M., Ghanbari, V., Dezyani, M., Ezzati, R., Soleimani, M. (2013) Modeling the drying kinetics of onion in a fluidized bed drier equipped with a moisture controller using regression, fuzzy logic and artificial neural networks methods. Iranian Journal of Nutrition Sciences & Food Technology Vol. 7, No. 5: 399- 406
[7] Kaveh, M., Jahanbakhshi, A. 1, Golpour, I., Mesri Gandshmin, T., Abbaspour-Gilandeh, Y., Jahedi Rad, Sh. (2019). Prediction of white mulberry drying kinetics in microwaveconvective dryer: A comparative study between mathematical model, artificial neural network and ANFIS .Journal of food science and technology ( Iran) .JFST No. 88, Vol. 16, June 2019
[8] Bhong, M.G., Kale, V. M. 2020. Drying mechanism of Indian dark red onion slices at high velocity. AIMS Agriculture and Food, , 5(2): 245–Volume 5, Issue 2, 245–261. DOI: 10.3934/agrfood.2020.2.
[9] Kaveh, M., Amiri Chayjan, R. and Khezri, B. (2018). Modeling drying properties of pistachio nuts, squash and cantaloupe Seeds under fixed and fluidized bed using datadriven models and artificial neural networks. International Journal of Food Engineering. 14(1): DOI: 10.1515/ijfe-2017-0248. (In Press).
[10] Eshtiagh, A., Zare. D. 2015. Modeling of thin layer hot air-infrared drying of green peas. D of Thin Layer Hot Air-Infrared Drying of Green Pea. Agricultural Engineering International:CIGR Journal,, 23(4), 246-258.
[11] Eshtiagh, A. 2013. Modeling and validation of green peas drying process in a hot-air infrared dryer. Unpublished M.S. Thesis. Shiraz University. Shiraz, Iran.
[12] Horuz E., Bozkurt, H., Karatas, H., Maskan, M. 2018. Simultaneous application of microwave energy and hot air to whole drying process of apple slices. : Drying kinetics, modeling, temperature profile and energy aspect, Heat and Mass Transfer. 54: 425–436
[13] Kaveh, M., Amiri Chayjan, R. 2016. Modeling Thin-Layer Drying of Turnip Slice Under Semi-Industrial Continuous Band Dryer. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.12778
[14] Kayran, S., Doymaz, İ. 2016. Infrared drying and effective moisture diffusivity of apricot halves: Influence of pretreatment and infrared power. Journal of Food Processing and Preservation, 41(2): 1-8. https://doi.org/10.1111/jfpp.12827
[15] Coradi, P. C., Borém, F. M., Rodrigues Reinato, C. H. 2017. Mathematical modeling of drying the pulped coffee (Coffea arabica L.) at different air conditions. Revista Brasileira de Tecnologia Agroindustrial. 11(2): 2397-2416. DOI:10.3895/rbta.v11n2.3166
[16] Kurozawa, L. E., Azoubel, P. M., Xidieh Murr, F. E. Park, K. J. 2011. Drying kinetic of fresh and osmotically dehydrated mushroom (Agaricus blazei). J. Food Process Eng., 35(2), 295–313.
[17] Doymaz I., Kipcak, A. S., Piskin, S. 2015. Microwave drying of green bean slices: Drying kinetics and physical quality, Czech Journal of Food Science 33(4): 367-376.
[18] Naghavi, Z., Moheb, A., Ziaei-rad, S. 2010. Numerical simulation of rough rice drying in a deep-bed dryer using non-equilibrium model. Energ. Convers. Manage. 51: 258–264.
[19] Murthy, K., Manohar, B. 2013. Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network. Journal of Food Science and Technology, 51(12): 3712-3721.
[20] Kayran, S., Doymaz I. 2017. Determination of drying kinetics andphysicochemical characterization of apricotpomace in hot-air dryer. Journal of ThermalAnalysis and Calorimetry, 130(2): 1163-1170.
[21] AL-Khuseibi, M., Shyam S. S., Perera, C. O. 2005. Comparison of water blanching and high hydrostatic pressure effects on drying kinetics and qualityof potato.Dry. Technol, 23(12): ,2449–2461
[22] AOAC. 1990. Official Methods of Analysis, Association of Official Analytical Chemists, Arlington,VA.
[23] Arumuganathan, T., Manikantan, M. R., Rai, R. D., Anandakumar, S., Khare,V. 2009. Mathematical modeling of drying kinetics of milky mushroom in a fluidized bed dryer. International .Agrophysics. 23(1): 1–7.
[24] Bingol, G., Pan, Z., Roberts, J. S., Devres, Y. O., Balaban, M. O. 2008. Mathematical modelling of microwave-assisted convective heating and drying of grapes. Int. J. Agric. Biol. Eng., 1(2),46–54.
[25] Aghbashlo, M. Kianmehr, M. H., Arabhosseini, A. 2009. Modeling of thin-layer drying of potato slices in length of continuous band dryer. Energy Conversation and Management, 50, 1348–1355.
[26] Garcia-Martinez E., Igual, M., Martin-Esparza, M. E., Martinez-Navarrete, N. 2013. Assessment of the bioactive compounds, color, and mechanical properties of apricots as affected by drying treatment.
Food and Bioprocess Technology. 6:3247–3255.
[27] Doymaz I (2006) Drying kinetics of black grapes treated with different solutions. J Food Eng 76(2):212–217
[28] Incedayi, B., Tamer, C.E., Sinir, G.O., Suna, S., Copur, O.U. 2016. Impact of different drying parameters on color, b-carotene, antioxidant. activity and minerals of apricot (Prunus armeniaca L.). Food Science and Technology. 36(1):171–178.
[29] Sun, J., Hu, X., Zhao, G., Wu, J., Wang, Z., Chen, F., Liao, X. 2007. Characteristics of thin-layer infrared drying of apple pomace with and without hot air-drying. Food Science and Technology International. 13:91–97.
[30] Mujumdar, A. S. 2000. Drying Technology in agriculture and food sciencecs. sciences Publishers, INC, 313 P.
[31] Salehi, F. K. 2016. Investigation of Mass Transfer Kinetics in Combined Infrared-Hot Air Dryer for Eggplant slices. Food Innovation Technology, 7: 53-60 (In Persian).
[32] Puente-Díaza, L., Ah-Hen, K., Vega-Gálvez, A., Lemus-Mondaca, R., Di Scala, K. 2013. Combined Infrared-Convective Drying of Murta (Ugni molinae Turcz) Berries: Kinetic Modeling and Quality Assessment. Drying Technology: An International Journal, 31: 329.
[33] Roman MC, F. M. ( 2019). Convective drying of yellow discarded onion (Angaco INTA): Modelling of moisture loss kinetics and effect on phenolic compounds. Inf Process Agric.
[34] Akbarpour H, Mohajeri M, Akbarpour M (2016) Pore diameter of and nanoporous anodic alumina: experimental study and application of ANFIS MLR. Chemometr Intell Lab 153:82–91
[35] Ghanbari, M., Sahraeian, S. M. 2020. Investigation and Analysis of Drying Kinetics of Carrot. Quarterly Research Journal of Technical and Vocational University. Vol. 17, No. 2: 121-128.
[36] Islam, M. R., Sablani, S. S., Mujumdar, A. S. 2003. Artificial neural network model for prediction of drying rates. Journal of Drying Technology. 21(9): 1867–1884.
[37] Akpinar, E. K. 2006. Determination of suitable thin layer drying for some vegetables and fruits. Journal of Food Engineering. 73:75– 84.
[38] Doymaz, I. (2011). Drying of eggplant slicein thin layers at different air temperatures. Journal of Food Processing and Preservation,, 35: 280-289.
[39] Khoshtaghaza, M.H., Darvishi, H., Minaei, S. 2015. Effects of microwave - fluidized bed drying on quality, energy consumption and drying kinetics of soybean kernels. Journal of Food Science and Technology. 52(8): 4749- 4760.
[40] Kaveh, M., Jahanbakhshi, A., AbbaspourGilandeh, Y., Taghinezhad, E. and Moghimi, M.B.F. (2018). The effect of ultrasound pretreatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network. Journal of Food Process
Enginering, 41(7): e12868
[41] Tavakolipour, H., Mokhtarian, M. and Kalbasi-Ashtari, A. 2014 Intelligent monitoring of zucchini drying process based on fuzzy expert engine and ANN. Journal of. Food Process Engineering, 37(5): 474- 481
[42] Abasi, S., Minaei, S., Khoshtaghaza, M.H. 2014. Investigation of kinetics and energy consumption of thin layer drying of corn. Journal of agricultural machinery. Volume 4, Number 1:97-107.