[1] Amiri, S., Nezamdoost-Sani, N., Mostashari, P., McClements, D. J., Marszałek, K., & Mousavi Khaneghah, A. (2022). Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review. Critical reviews in food science and nutrition, 1-27.
[2] Aspri, M., Papademas, P., & Tsaltas, D. (2020). Review on non-dairy probiotics and their use in non-dairy based products. Fermentation, 6(1), 30.
[3] Gupta, S., & Abu-Ghannam, N. (2012). Probiotic fermentation of plant based products: possibilities and opportunities. Critical reviews in food science and nutrition, 52(2), 183-199.
[4] Zhang, L. D. H. (2020). Recent advances in probiotics encapsulation by electrospinning. ES Food & Agroforestry, 2, 3-12.
[5] Jiang, Y., Zheng, Z., Zhang, T., Hendricks, G., & Guo, M. (2016). Microencapsulation of Lactobacillus acidophilus NCFM using polymerized whey proteins as wall material. International journal of food sciences and nutrition, 67(6), 670-677.
[6] Shinde, T., Sun-Waterhouse, D., & Brooks, J. (2014). Co-extrusion encapsulation of probiotic Lactobacillus acidophilus alone or together with apple skin polyphenols: An aqueous and value-added delivery system using alginate. Food and Bioprocess Technology, 7(6), 1581-1596.
[7] Azizi, S., Rezazadeh-Bari, M., Almasi, H., & Amiri, S. (2021). Microencapsulation of Lactobacillus rhamnosus using sesame protein isolate: Effect of encapsulation method and transglutaminase. Food Bioscience, 41, 101012.
[8] Hazirah, M. N., Isa, M. I. N., & Sarbon, N. M. (2016). Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf Life, 9, 55-63.
[9] Balasubramanian, R., Kim, S. S., Lee, J., & Lee, J. (2019). Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-Carrageenan, xanthan gum and gellan gum. International journal of biological macromolecules, 123, 1020-1027.
[10] Moradi, M., Daneshzad, E., & Azadbakht, L. (2020). The effects of isolated soy protein, isolated soy isoflavones and soy protein containing isoflavones on serum lipids in postmenopausal women: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 60(20), 3414-3428.
[11] Li, C., Yang, F., Huang, Y., Huang, C., Zhang, K., & Yan, L. (2020). Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality. Journal of Food Engineering, 265, 109697.
[12] Bis-Souza, C. V., Pateiro, M., Domínguez, R., Penna, A. L., Lorenzo, J. M., & Barretto, A. C. S. (2020). Impact of fructooligosaccharides and probiotic strains on the quality parameters of low-fat Spanish Salchichón. Meat science, 159, 107936.
[13] Mishra, S., & Mishra, H. N. (2013). Effect of synbiotic interaction of fructooligosaccharide and probiotics on the acidification profile, textural and rheological characteristics of fermented soy milk. Food and Bioprocess Technology, 6(11), 3166-3176.
[14] Vaniski, R., da Silva, S. C., da Silva‐Buzanello, R. A., Canan, C., & Drunkler, D. A. (2021). Improvement of Lactobacillus acidophilus La‐5 microencapsulation viability by spray‐drying with rice bran protein and maltodextrin. Journal of Food Processing and Preservation, 45(4), e15364.
[15] Maleki, O., Khaledabad, M. A., Amiri, S., Asl, A. K., & Makouie, S. (2020). Microencapsulation of Lactobacillus rhamnosus ATCC 7469 in whey protein isolate-crystalline nanocellulose-inulin composite enhanced gastrointestinal survivability. LWT, 126, 109224.
[16] Dehkordi, S. S., Alemzadeh, I., Vaziri, A. S., & Vossoughi, A. (2020). Optimization of alginate-whey protein isolate microcapsules for survivability and release behavior of probiotic bacteria. Applied biochemistry and biotechnology, 190(1), 182-196.
[17] González-Ferrero, C., Irache, J. M., Marín-Calvo, B., Ortiz-Romero, L., Virto-Resano, R., & González-Navarro, C. J. (2020). Encapsulation of probiotics in soybean protein-based microparticles preserves viable cell concentration in foods all along the production and storage processes. Journal of microencapsulation, 37(3), 242-253.
[18] Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Khaledabad, M. A. (2019). Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: Optimization of fermentation variables and characterization of structure and bioactivities. International Journal of Biological Macromolecules, 123, 752–765.
[19] Premjit, Y., & Mitra, J. (2021). Optimization of electrospray-assisted microencapsulation of probiotics (Leuconostoc lactis) in soy protein isolate-oil particles using Box-Behnken experimental design. Food and Bioprocess Technology, 14(9), 1712-1729.
[20] Rajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT-Food Science and Technology, 60(2), 773-780.
[21] Ma, J., Xu, C., Yu, H., Feng, Z., Yu, W., Gu, L., ... & Hou, J. (2021). Electro-encapsulation of probiotics in gum Arabic-pullulan blend nanofibres using electrospinning technology. Food Hydrocolloids, 111, 106381.
[22] Ribeiro, M. C. E., Chaves, K. S., Gebara, C., Infante, F. N., Grosso, C. R., & Gigante, M. L. (2014). Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Research International, 66, 424-431.
[23] Yasmin, I., Saeed, M., Pasha, I., & Zia, M. A. (2019). Development of whey protein concentrate-pectin-alginate based delivery system to improve survival of B. longum BL-05 in simulated gastrointestinal conditions. Probiotics and antimicrobial proteins, 11(2), 413-426.
[24] Huq, T., Fraschini, C., Khan, A., Riedl, B., Bouchard, J., & Lacroix, M. (2017). Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydrate polymers, 168, 61-69.
[25] Hosseini, S., Mohammadian, T., Abbaspour, M. and Alishahi, M. (2018). The effect of microencapsulation with alginate/chitosan on survival of probiotic bacteria (Lactobacillus plantarum) in the simulated condition of stomach and intestines in Huso huso. Iranian Scientific Fisheries Journal. 27(2), 161-172.
[26] Peinado, I., Lesmes, U., Andrés, A. and McClements, D. (2010). Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides. Langmuir, 26(12), 9827-9834.
[27] Duman, D., & Karadag, A. (2021). Inulin added electrospun composite nanofibres by electrospinning for the encapsulation of probiotics: characterisation and assessment of viability during storage and simulated gastrointestinal digestion. International Journal of Food Science & Technology, 56(2), 927-935.
[28] Motalebi Moghanjougi, Z., Rezazadeh Bari, M., Alizadeh Khaledabad, M., Amiri, S., & Almasi, H. (2021). Microencapsulation of Lactobacillus acidophilus LA‐5 and Bifidobacterium animalis BB‐12 in pectin and sodium alginate: A comparative study on viability, stability, and structure. Food Science & Nutrition, 9(9), 5103-5111.
[29] Çabuk, B., & Harsa, Ş. (2015). Whey protein-pullulan (WP/Pullulan) polymer blend for preservation of viability of Lactobacillus acidophilus. Drying Technology, 33(10), 1223-1233.
[30] Amiri, S., Teymorlouei, M. J., Bari, M. R., & Khaledabad, M. A. (2021). Development of Lactobacillus acidophilus LA5-loaded whey protein isolate/lactose bionanocomposite powder by electrospraying: A strategy for entrapment. Food Bioscience, 43, 101222.