[1] Ghareh naghdeh, S., Samadlooi, H., Soti khabani, M. & Ghareh naghdeh, S. (2016). Nanoemulsion from essential oil of salvia hypoleuca and investigation of its antimicrobial and physicochemical properties. Food Science and Technology, 70(14), 337-448. (In farsi)
[2] Ultee, A., Bennik, H. J. & Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561- 1568.
[3] Nakhaee, F. (2015). Introduction of medicinal trees sandalwood (Santalum album) and Redsandal (Pterocarpus National Conference on Medicinal Plants and Sustainable Agriculture, 8-12 Aug., Shahid mofatteh University, Hamedan, Iran, pp. 1-13 (In farsi).
[4] Burdock, G. A. & Carabin, I. G. (2008). Safety assessment of sandalwood oil (Santalum album L.). Food and Chemical Toxicology, 46(2), 421-432.
[5] Baldovini, S. & Dwivedi, C. (1995). Anticancer Effects of Sandalwood (Santalum album). International Journal of Cancer Research and Treatment, 35(6), 3137-3145.
[6] Zhang, S., Zhang, M., Fang, Z. & Liu, Y. (2016). Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. LWT-Food Science and Technology, 75(1), 316-322.
[7] Desai, K. G. H. & Park, H. J. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23(7), 1361-1394.
[8] Alizadeh, H., Farzaneh, M. & Azami, Z. (2015). Effects of nano-emulsion of cinnamon oils in decreasing strawberry post-harvest rots. biological control of pestes & plant diseases, 4(1), 57-64.
[9] Donsi, F., Annunziata, M., Sessa, M. & Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Science and Technology, 44(9), 1908-1914.
[10] Afzali, M. & Mirhosseini, M. (2016). Nanotechnology approach in food industry. In: Proceedings of 1s scientific research conference of Iranian food sciences and industries, 21-25 Jul., Anjoman tosee va tarvij oloum va fonoun bonyadin, Tehran, Iran, pp. 1-8. (In farsi)
[11] Mirmajidi, A. & Abbasi, S. (2013). Nanoemulsions; Introduction, production, application. Nanotechnology Monthly, 193(8), 45-48. (In farsi).
[12] Badfarsa, H., Ahmadzadeh Ghavidel, R. & Shrayee, P. (2018). The effect of microcoating process using freeze drying on physicochemical and antioxidant properties of Heracleum persicum essential oil. Journal of Innovation in Food Science and Technology, 10(2), 123-136. (In farsi)
[13] Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R. & Martín-Belloso. (2013). Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids, 30(1), 401-407.
[14] Nirmala, M. J., Durai, L., Gopakumar, V. & Nagarajan, R. (2019). Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. International Journal of Nanomedicine, 14(3), 6439- 6450.
[15] Gulluce, M., Sahin, F., Sokmen, M., Ozer, H., Daferera, D., Sokmen, A., Polissiou, M., Adiguzel, A. & Ozkan, H. (2007). Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. Longifolia. Food Chemistry, 103(4), 1449–1456.
[16] Arian far, A., Mehraban Sang atash, M. & Saleh abadi, S. (2017). Identification of chemical constituents of essential oil from aerial parts of florida Rubia. Journal of North Khorasan University of Medical sciences, 9(1), 15-26. (In farsi)
[17] Heydari, M. & Bagheri, M. (2018). Antimicrobial effects of nanoemulsion of aqueous essential oil of peppermint (Mentha Piperita Lamiaceae) on gram-negative bacteria Escherichia coli. Journal of Rafsanjan University of Medical Sciences, 18(6), 515-528. (In farsi).
[18] Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R. & Martín-Belloso. (2015). Hysicochemical characterization and antimicrobial activity of foodgrade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids, 43(1), 547-556.
[19] Noshad, M., Mohebbi, M., Shahidi, F. & Mortazavi, S.A. (2011). Multi-objective ptimization of osmotic–ultrasonic pretreatments and hot-air drying of quince using response surface methodology. Food Bioprocess Technology, 5(3), 2098-2110.
[20] Santha, S. & Dwivedi, C. (2015). Anticancer Effects of Sandalwood (Santalum album). Anticancer research, 35(6), 3137-3145.
[21] Sun, D.W. (2014). Emerging Technologies for Food Processing (2nd ed). Ireland: Dublin.
[22] Ostadzadeh, M., Aabbasi, S. & Ehsani, M. R. (2012). The effect of ultrasound on particle size, color, viscosity and sensory properties of cocoa milk. Iranian Food Science and Technology Research Journal, 8(1), 73-83. (In farsi).
[23] Kentish, T.J., Wooster M., Ashokkumar S., Balachandran R. & Mawson L. Simons. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science and Emerging Technologies, 9(2), 170–175.
[24] Guzman, G., Adelina Rojas, M. & Aragón., M. (2021). Optimization of Ultrasound-Assisted Emulsification of Emollient Nanoemulsions of Seed Oil of Passiflora edulis var. edulis. Cosmetics, 8(1), 1-22.
[25] Hassanzadeh Ochtapeh, H., Alizadeh, M. & Rezazad Bari, M. (2018). Nano-encapsulation of garlic extract by water-in-oil emulsion: physicochemical and antimicrobial characteristics. Food Science and Technology, 84(15), 337-347.
[26] Salehabadi, S. & Mehrban sang atash, M. (2015). Evaluation of the antioxidant activity and total phenols, flavonoids in methanolic, dichloromethane and ethyl acetate extracts of aerial parts of Rubia florida. Journal of North Khorasan University, 7(1), 101-112 (in farsi).
[27] Ma, L., Lin, Q., Lei, D., Liu, Sh. & Song., Y. (2018). Preparation and properties of sandalwood essential oil microcapsules in detergents. Chemical engineering transactions, 71(8), 1-12.