بررسی خصوصیات فیزیکوشیمیایی نانوامولسیون اسانس گیاه صندل سفید (Santalum album linn)

نویسندگان
1 گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 گروه مهندسی علوم و صنایع غذایی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
چکیده
استفاده از نانوتکنولوژی در صنایع غذایی امکاناتی مانند درون‌پوشانی و انتقال هدفمند ترکیبات و اسانس‌های گیاهی بدون تأثیرات حسی نامطلوب را فراهم می‌سازد. در این تحقیق اسانس گیاه صندل سفید (Santalum album linn.) برای تهیه نانو امولسیون استفاده شد. خصوصیات نانوامولسیون ارزیابی و بهینه­یابی شد. برای انجام تحقیق از نرم‌افزار آماری Design-Expert 12 و روش آماری سطح پاسخ و طرح مرکب مرکزی با متغیرهای آماری، فرکانس فراصوت (۳۱-25 کیلوهرتز)، مدت ‌زمان فراصوت (10-20 ثانیه) و میزان اسانس صندل (1-10 درصد) استفاده شد. پس از استخراج و شناسایی ترکیبات مؤثره اسانس آزمون‌های درصد فعالیت آنتی‌اکسیدانی، ویسکوزیته، شاخص­­­­های رنگی و اندازه ذرات نانو امولسیون انجام شد و پس از بهینه­یابی آزمون پایداری بر روی نمونه بهینه انجام گرفت. نتایج بهینه‌یابی نشان داد با شرایط اسانس صندل به میزان ۵/۵ درصد، فرکانس فراصوت به میزان 2۸ کیلوهرتز، مدت ‌زمان فراصوت به میزان 1۵ ثانیه، نانوامولسیونی با خصوصیات بهینه می‌توان تولید نمود. پس از تکرار آزمایش‌ها برای نقطه به‌دست‌آمده پاسخ‌های ذیل به دست آمد، میزان اندازه ذرات 230 نانومتر، ویسکوزیته معادل 10/3 میلی‌پاسکال ثانیه، شاخص روشنایی معادل 78، شاخص سفیدی 58 و فعالیت آنتی‌اکسیدانی معادل 70 درصد بود. انتظار می رود این نانوامولسیون­ها پتانسیل کاربرد در در صنایع آرایشی، دارویی و غذایی را دارا باشند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Physicochemical properties evaluation of Sandalwood (Santalum album linn) essential oil nanoemulsion

نویسندگان English

erfan amiri 1
Ebrahim Hoseini 1
Akram Sharifi 2
1 Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Food Science and Technology, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
چکیده English

The use of nanotechnology in the food industry provides facilities such as encapsulation, targeted transfer of plant compounds and extracts without unfavourable sensitive effects. In this study, the essential oil (EO) of Santalum album (Santalum album linn.) was used to prepare a nanoemulsion. The nanoemulsion characteristics were evaluated and the data was optimized. To conduct the research, Design-Expert 12, statistical method of response surface, Central composite design with variables such as ultrasound frequency (25-31 kHz), ultrasound duration (10-20 sec.), and Santalum album EO (1%-10%) were used. After extraction of EO and identification of its effective compounds; percentage of antioxidant activity, viscosity, color indexes and the particle size of nanoemulsions tests were done. After optimization, stability test was performed on the optimized sample. The optimization results showed that with 5.5% Santalum album EO, ultrasound frequency of 28 KHZ, ultrasound duration of 15 seconds a nanoemulsion having optimum characteristics can be produced. After repeating the experiments for the obtained point, resulted in production of a nanoemulstion having particle size of 230 nm, the viscosity of 3.10 mPa.s, the brightness index of 78, the whiteness index of 58, and the antioxidant activity of 70%. It is believed these nanoemulsions have the potential to be used in the cosmetics, pharmaceutical and food industries.

کلیدواژه‌ها English

Optimization
Encapsulation
Response surface
Central composite design
nanotechnology
[1] Ghareh naghdeh, S., Samadlooi, H., Soti khabani, M. & Ghareh naghdeh, S. (2016). Nanoemulsion from essential oil of salvia hypoleuca and investigation of its antimicrobial and physicochemical properties. Food Science and Technology, 70(14), 337-448. (In farsi)
[2] Ultee, A., Bennik, H. J. & Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561- 1568.
[3] Nakhaee, F. (2015). Introduction of medicinal trees sandalwood (Santalum album) and Redsandal (Pterocarpus National Conference on Medicinal Plants and Sustainable Agriculture, 8-12 Aug., Shahid mofatteh University, Hamedan, Iran, pp. 1-13 (In farsi).
[4] Burdock, G. A. & Carabin, I. G. (2008). Safety assessment of sandalwood oil (Santalum album L.). Food and Chemical Toxicology, 46(2), 421-432.
[5] Baldovini, S. & Dwivedi, C. (1995). Anticancer Effects of Sandalwood (Santalum album). International Journal of Cancer Research and Treatment, 35(6), 3137-3145.
[6] Zhang, S., Zhang, M., Fang, Z. & Liu, Y. (2016). Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. LWT-Food Science and Technology, 75(1), 316-322.
[7] Desai, K. G. H. & Park, H. J. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23(7), 1361-1394.
[8] Alizadeh, H., Farzaneh, M. & Azami, Z. (2015). Effects of nano-emulsion of cinnamon oils in decreasing strawberry post-harvest rots. biological control of pestes & plant diseases, 4(1), 57-64.
[9] Donsi, F., Annunziata, M., Sessa, M. & Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Science and Technology, 44(9), 1908-1914.
[10] Afzali, M. & Mirhosseini, M. (2016). Nanotechnology approach in food industry. In: Proceedings of 1s scientific research conference of Iranian food sciences and industries, 21-25 Jul., Anjoman tosee va tarvij oloum va fonoun bonyadin, Tehran, Iran, pp. 1-8. (In farsi)
[11] Mirmajidi, A. & Abbasi, S. (2013). Nanoemulsions; Introduction, production, application. Nanotechnology Monthly, 193(8), 45-48. (In farsi).
[12] Badfarsa, H., Ahmadzadeh Ghavidel, R. & Shrayee, P. (2018). The effect of microcoating process using freeze drying on physicochemical and antioxidant properties of Heracleum persicum essential oil. Journal of Innovation in Food Science and Technology, 10(2), 123-136. (In farsi)
[13] Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R. & Martín-Belloso. (2013). Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids, 30(1), 401-407.
[14] Nirmala, M. J., Durai, L., Gopakumar, V. & Nagarajan, R. (2019). Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. International Journal of Nanomedicine, 14(3), 6439- 6450.
[15] Gulluce, M., Sahin, F., Sokmen, M., Ozer, H., Daferera, D., Sokmen, A., Polissiou, M., Adiguzel, A. & Ozkan, H. (2007). Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. Longifolia. Food Chemistry, 103(4), 1449–1456.
[16] Arian far, A., Mehraban Sang atash, M. & Saleh abadi, S. (2017). Identification of chemical constituents of essential oil from aerial parts of florida Rubia. Journal of North Khorasan University of Medical sciences, 9(1), 15-26. (In farsi)
[17] Heydari, M. & Bagheri, M. (2018). Antimicrobial effects of nanoemulsion of aqueous essential oil of peppermint (Mentha Piperita Lamiaceae) on gram-negative bacteria Escherichia coli. Journal of Rafsanjan University of Medical Sciences, 18(6), 515-528. (In farsi).
[18] Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R. & Martín-Belloso. (2015). Hysicochemical characterization and antimicrobial activity of foodgrade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids, 43(1), 547-556.
[19] Noshad, M., Mohebbi, M., Shahidi, F. & Mortazavi, S.A. (2011). Multi-objective ptimization of osmotic–ultrasonic pretreatments and hot-air drying of quince using response surface methodology. Food Bioprocess Technology, 5(3), 2098-2110.
[20] Santha, S. & Dwivedi, C. (2015). Anticancer Effects of Sandalwood (Santalum album). Anticancer research, 35(6), 3137-3145.
[21] Sun, D.W. (2014). Emerging Technologies for Food Processing (2nd ed). Ireland: Dublin.
[22] Ostadzadeh, M., Aabbasi, S. & Ehsani, M. R. (2012). The effect of ultrasound on particle size, color, viscosity and sensory properties of cocoa milk. Iranian Food Science and Technology Research Journal, 8(1), 73-83. (In farsi).
[23] Kentish, T.J., Wooster M., Ashokkumar S., Balachandran R. & Mawson L. Simons. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science and Emerging Technologies, 9(2), 170–175.
[24] Guzman, G., Adelina Rojas, M. & Aragón., M. (2021). Optimization of Ultrasound-Assisted Emulsification of Emollient Nanoemulsions of Seed Oil of Passiflora edulis var. edulis. Cosmetics, 8(1), 1-22.
[25] Hassanzadeh Ochtapeh, H., Alizadeh, M. & Rezazad Bari, M. (2018). Nano-encapsulation of garlic extract by water-in-oil emulsion: physicochemical and antimicrobial characteristics. Food Science and Technology, 84(15), 337-347.
[26] Salehabadi, S. & Mehrban sang atash, M. (2015). Evaluation of the antioxidant activity and total phenols, flavonoids in methanolic, dichloromethane and ethyl acetate extracts of aerial parts of Rubia florida. Journal of North Khorasan University, 7(1), 101-112 (in farsi).
[27] Ma, L., Lin, Q., Lei, D., Liu, Sh. & Song., Y. (2018). Preparation and properties of sandalwood essential oil microcapsules in detergents. Chemical engineering transactions, 71(8), 1-12.