تاثیر افزودن سویه های پروبیوتیک و ترکیبات پری بیوتیک روی ویژگی‌های فیزیکوشیمیایی، میکروبی و حسی ماست سین بیوتیک گاومیش

نویسندگان
گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
چکیده
ماست سینبیوتیک یکی از مهمترین موادغذایی حاصل از ترکیب پروبیوتیکی و پری‌بیوتیکی است که ماده پری‌بیوتیک موجود در آن باعث افزایش زنده‌مانی باکتری‌های پروبیوتیک می‌شود. هدف از این مطالعه توسعه غذاهای لبنی عملگرا در قالب ماست گاومیش سین‌بیوتیک، بررسی تاثیر پریبیوتیکی اینولین و فروکتوالیگوساکارید در هرکدام در سه سطح 5/0، 1 و 5/1 درصد بر زندهمانی باکتریهای لاکتوباسیلوس­اسیدوفیلوس و بیفیدیوباکتریوم بیفیدیوم و نیز خواص فیزیکوشیمیایی و حسی ماست گاومیش بود. ویژگی‌های فیزیکوشیمیایی (pH، اسیدیته، ماده خشک، چربی، پروتئین، ویسکوزیته، آب اندازی) و ارزیابی حسی (طعم و بافت) طی 21 روز نگهداری و میزان زندهمانی لاکتوباسیلوس­اسیدوفیلوس و بیفیدیوباکتریوم‌بیفیدیوم طی 21 روز بررسی شد. نتایج حاصل از آنالیز آماری نشان داد، با افزایش سطح فروکتوالیگوساکارید در مقایسه با نمونه حاوی اینولین و شاهد، میزان pH کاهش و میزان اسیدیته، ماده خشک، آباندازی و ویسکوزیته افزایش بیشتری یافتند. همچنین مقدار چربی و پروتئین در طی 21 روز ماندگاری تفاوت معنیداری نداشتند (05/0<p). از لحاظ ارزیابی حسی، نمونه ماست گاومیش سینبیوتیک حاوی درصد بالای فروکتولیگوساکارید و اینولین نسبت به شاهد بهتر ارزیابی شدند. همچنین در طی 21 روز ماندگاری میزان زندمانی باکتریهای پروبیوتیک لاکتوباسیلوساسیدوفیلوس(log cfu/ml2/8) نسبت به بیفیدوباکتریوم‌بیفیدیوم(log cfu/ml 62/7) بهتر بود. بنابراین، استفاده از فروکتوالیگوساکارید و اینولین برای تولید ماست گاومیش سین‌بیوتیک با ویژگی‌های فراسودمند توصیه میشود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effects of probiotic strains and prebiotic compounds on physicochemical, Microbiological and sensory properties of Buffalo synbiotic yogurt

نویسندگان English

Ali Sabzichi Esfahlan
Javad Hesari
Seyed Hadi Peighambardoust
Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
چکیده English

Synbiotic yogurt is the most important food ingredient from the combination of probiotics and prebiotics, which increases the survival of probiotic bacteria during yogurt storage due to its prebiotic properties. The purpose of this study was to develop synbiotic buffalo yogurt by addition of inulin and fructo-oligosaccharide as prebiotics compounds (0.5, 1 and 1.5%) on the survival of Lactobacillus acidophilus and Bifidiobacterium bifidium bacteria and physicochemical and sensory properties of buffalo yogurt. The physicochemical characteristics (pH, acidity, dry matter, fat, protein, viscosity, syneresis) and sensory evaluation (taste and texture) during 21 days of storage and the survival rate of Lactobacillus-acidophilus and Bifidiobacterium bifidium during 21 days were investigated. The results of the statistical analysis showed that with increase in the fructo-oligosaccharide level compared to the sample containing inulin and the control, the pH decreased, acidity, dry matter, water retention and viscosity increased (p<0.05). Also, the amount of fat and protein did not differ significantly during 21 days of shelf life (p>0.05). In terms of sensory evaluation, the samples of synbiotic buffalo yogurt containing high percentage of fructo-oligosaccharide and inulin were evaluated better than the control. Therefore, the use of fructo-oligosaccharide and inulin is recommended for the production of synbiotic buffalo yogurt with functional properties.

کلیدواژه‌ها English

Buffalo’s Yogurt
Fructo-Oligosaccharide
Inulin
Probiotic
Synbiotic
1. Ahmadi, A.; Milani, E.; Madadlou, A.; Mortazavi, S.A.; Mokarram, R.R.; Salarbashi, D. Synbiotic Yogurt-Ice Cream Produced via Incorporation of Microencapsulated Lactobacillus Acidophilus (La-5) and Fructooligosaccharide. J. Food Sci. Technol. 2014, 51, 1568–1574.
2. Agrawal, R. Probiotics: An Emerging Food Supplement with Health Benefits. Food Biotechnol. 2005, 19, 227–246.
3. Ballongue, J.; Schumann, C.; Quignon, P. Effects of Lactulose and Lactitol on Colonic Microflora and Enzymatic Activity. Scand. J. Gastroenterol. 1997, 32, 41–44.
4. Zendeboodi, F.; Khorshidian, N.; Mortazavian, A.M.; da Cruz, A.G. Probiotic: Conceptualization from a New Approach. Curr. Opin. Food Sci. 2020, 32, 103–123.
5. Aghamirzaei, M.; Peighambardoust, S.H.; Azadmard-Damirchi, S.; Majzoobi, M. Effects of Grape Seed Powder as a Functional Ingredient on Flour Physicochemical Characteristics and Dough Rheological Properties. J. Agric. Sci. Technol. 2015, 17, 365–373.
6. Gallina, D.A.; Barbosa, P. de P.M. Viability of Probiotics, Physicochemical and Microbiological Characterization of Beverage (Smoothie) with Symbiotic Yogurt and Berries Pulp. Res. Soc. Dev. 2022, 11, e19511325975–e19511325975.
7. Peighambardoust, S.H.; Beigmohammadi, F.; Peighambardoust, S.J. Application of Organoclay Nanoparticle in Low-Density Polyethylene Films for Packaging of UF Cheese. Packag. Technol. Sci. 2016, 29, 355–363, doi:10.1002/pts.2212.
8. Meybodi, N.M.; Mortazavian, A.M.; Arab, M.; Nematollahi, A. Probiotic Viability in Yoghurt: A Review of Influential Factors. Int. Dairy J. 2020, 109, 104793.
9. Turkmen, N.; Akal, C.; Özer, B. Probiotic Dairy-Based Beverages: A Review. J. Funct. Foods 2019, 53, 62–75.
10. Nottagh, S.; Hesari, J.; Peighambardoust, S.H.; Rezaei-Mokarram, R.; Jafarizadeh-Malmiri, H. Effectiveness of Edible Coating Based on Chitosan and Natamycin on Biological, Physico-Chemical and Organoleptic Attributes of Iranian Ultra-Filtrated Cheese. Biologia (Bratisl). 2020, 75, 605–611, doi:10.2478/s11756-019-00378-w.
11. Amenyogbe, E.; Chen, G.; Wang, Z.; Huang, J.; Huang, B.; Li, H. The Exploitation of Probiotics, Prebiotics and Synbiotics in Aquaculture: Present Study, Limitations and Future Directions.: A Review. Aquac. Int. 2020, 28, 1017–1041.
12. Yoon, J.A.; Shin, K.-O. Studies on the Biological Activity of Synbiotics: A Review. Korean J. Food Nutr. 2018, 31, 319–327.
13. Salar, S.; Jafarian, S.; Mortazavi, S.A. Physiochemical and Sensory Characteristics of Synbiotic Beverage Yogurt Developed from Buffalo´ s Colostrum & Milk. Food Sci. Technol. 2021, 18, 247–257.
14. Golshan Tafti, A.; Peighambardoust, S.H.; Hesari, J.; Bahrami, A.; Shakuoie Bonab, E. Physico-Chemical and Functional Properties of Spray-Dried Sourdough in Breadmaking. Food Sci. Technol. Int. 2013, 19, 271–278, doi:10.1177%2F1082013212452415.
15. Misaghi, A.; Talebi, F.; Noori, N.; Rezaeigolestani, M. Microbiological and Chemical Characterization of Halvi, a Traditional Iranian Dairy Product Made from Sheep Milk. J. Nutr. Fasting Heal. 2019, 7, 110–115.
16. Peighambardoust, S.H.; van Brenk, S.; van der Goot, A.J.; Hamer, R.J.; Boom, R.M. Dough Processing in a Couette-Type Device with Varying Eccentricity: Effect on Glutenin Macro-Polymer Properties and Dough Micro-Structure. J. Cereal Sci. 2007, 45, 34–48, doi:10.1016/j.jcs.2006.05.009.
17. Khodaeimehr, R.; Peighambardoust, S.J.; Peighambardoust, S.H. Preparation and Characterization of Corn Starch/Clay Nanocomposite Films: Effect of Clay Content and Surface Modification. Starch/Staerke 2018, doi:10.1002/star.201700251.
18. Peighambardoust, S.H.; van der Goot, A.J.; Boom, R.M.; Hamer, R.J. Mixing Behaviour of a Zero-Developed Dough Compared to a Flour-Water Mixture. J. Cereal Sci. 2006, 44, doi:10.1016/j.jcs.2005.12.011.
19. Kariyawasam, K.M.G.M.M.; Lee, N.-K.; Paik, H.-D. Synbiotic Yoghurt Supplemented with Novel Probiotic Lactobacillus Brevis KU200019 and Fructooligosaccharides. Food Biosci. 2021, 39, 100835.
20. Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Mohammadi, M.; Lorenzo, J.M. Chitosan Nanoparticles Encapsulating Lemongrass (Cymbopogon Commutatus) Essential Oil: Physicochemical, Structural, Antimicrobial and in-Vitro Release Properties. Int. J. Biol. Macromol. 2021, 192, 1084–1097, doi:10.1016/J.IJBIOMAC.2021.10.070.
21. Peighambardoust, S.H.; Karami, Z.; Pateiro, M.; Lorenzo, J.M. A Review on Health-Promoting, Biological, and Functional Aspects of Bioactive Peptides in Food Applications. Biomolecules 2021, 11, 631, doi:10.3390/biom11050631.
22. Galdeano, C.M.; Cazorla, S.I.; Dumit, J.M.L.; Vélez, E.; Perdigón, G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann. Nutr. Metab. 2019, 74, 115–124.
23. Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92.
24. Torre, L. La; Tamime, A.Y.; Muir, D.D. Rheology and Sensory Profiling of Set‐type Fermented Milks Made with Different Commercial Probiotic and Yoghurt Starter Cultures. Int. J. Dairy Technol. 2003, 56, 163–170.
25. Staffolo, M. Dello; Bertola, N.; Martino, M. Influence of Dietary Fiber Addition on Sensory and Rheological Properties of Yogurt. Int. Dairy J. 2004, 14, 263–268.
26. Foroutan, R.; Peighambardoust, S.J.; Mohammadi, R.; Peighambardoust, S.H.; Ramavandi, B. Cadmium Ion Removal from Aqueous Media Using Banana Peel Biochar/Fe<inf>3</Inf>O<inf>4</Inf>/ZIF-67. Environ. Res. 2022, 211, doi:10.1016/j.envres.2022.113020.
27. Peighambardoust, S.H.; Hamer, R.J.; Boom, R.M.; van der Goot, A.J. Migration of Gluten under Shear Flow as a Novel Mechanism for Separating Wheat Flour into Gluten and Starch. J. Cereal Sci. 2008, 48, 327–338, doi:10.1016/j.jcs.2007.10.005.
28. Buyong, N.; Fennema, O. Amount and Size of Ice Crystals in Frozen Samples as Influenced by Hydrocolloids. J. Dairy Sci. 1988, 71, 2630–2639.
29. Bergonzelli, G.E.; Blum, S.; Brüssow, H.; Corthésy-Theulaz, I. Probiotics as a Treatment Strategy for Gastrointestinal Diseases? Digestion 2005, 72, 57–68.
30. Crittenden, R.G.; Morris, L.F.; Harvey, M.L.; Tran, L.T.; Mitchell, H.L.; Playne, M.J. Selection of a Bifidobacterium Strain to Complement Resistant Starch in a Synbiotic Yoghurt. J. Appl. Microbiol. 2001, 90, 268–278.
31. Karami, Z.; Peighambardoust, S.H.; Hesari, J.; Akbari-Adergani, B.; Andreu, D. Identification and Synthesis of Multifunctional Peptides from Wheat Germ Hydrolysate Fractions Obtained by Proteinase K Digestion. J. Food Biochem. 2019, 43, e12800, doi:10.1111/jfbc.12800.
32. Akın, M.B.; Akın, M.S.; Kırmacı, Z. Effects of Inulin and Sugar Levels on the Viability of Yogurt and Probiotic Bacteria and the Physical and Sensory Characteristics in Probiotic Ice-Cream. Food Chem. 2007, 104, 93–99.
33. Rascón-Díaz, M.P.; Tejero, J.M.; Mendoza-Garcia, P.G.; Garcia, H.S.; Salgado-Cervantes, M.A. Spray Drying Yogurt Incorporating Hydrocolloids: Structural Analysis, Acetaldehyde Content, Viable Bacteria, and Rheological Properties. Food Bioprocess Technol. 2012, 5, 560–567.
34. van der Goot, A.J.J.; Peighambardoust, S.H.H.; Akkermans, C.; Van Oosten-Manski, J.M.M. Creating Novel Structures in Food Materials: The Role of Well-Defined Shear Flow. Food Biophys. 2008, 3, 120–125, doi:10.1007/s11483-008-9081-8.
35. Champagne, C.P. 19 Some Technological Challenges in the Addition of Probiotic Bacteria to Foods. Prebiotics probiotics Sci. Technol. 2009, 761–804.
36. Farnsworth, J.P.; Li, J.; Hendricks, G.M.; Guo, M.R. Effects of Transglutaminase Treatment on Functional Properties and Probiotic Culture Survivability of Goat Milk Yogurt. Small Rumin. Res. 2006, 65, 113–121.