خشک‌کردن جریان معکوس شلتوک بخاردهی شده و اثر آن بر کیفیت برنج و انرژی مصرفی

نویسندگان
1 دانشجوی دکتری، گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی
2 استادیار مهندسی صنایع غذایی، موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی
3 دانشیار گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی
چکیده
خشک‌شدن غیر یکنواخت و کاهش برنج سالم تولیدی به دلیل عدم جابجایی شلتوک در خشک‌کن‌های بستر ثابت متداول یکی از مشکلات اساسی در کارخانجات برنجکوبی است. به منظور بررسی و ارائه روش خشک‌کردن مناسب با رویکرد ایجاد یکنواختی در عملیات خشک‌کردن، کاهش ضایعات، صرفه‌جویی مصرف انرژی مصرفی در خشک‌کن‌های بستر ثابت متداول از آزمایش دو فاکتوره در قالب طرح کاملا تصادفی استفاده شد. فاکتورها شامل رطوبت اولیه شلتوک در دو سطح (16 و 18 درصد) و روش خشک‌کردن در 4 سطح (جریان هوای یک طرفه، جریان هوای معکوس به مدت 1ساعت، 2 ساعت و 3 ساعت، سپس برگشت هوا و ادامه عملیات خشک‌کردن همانند جریان یک‌طرفه) بودند. دما و سرعت جریان هوای خشک‌کن برای کلیه تیمارها یکسان در نظر گرفته‌شد. در هر دو تیمار رطوبتی، خشک‌کردن به روش جریان معکوس به مدت سه ساعت، بیشترین مقدار برنج سالم (86/75-7/75 درصد) و کمترین مقدار انرژی مصرفی (49-41 مگاژول بر کیلوگرم آب) را بخود اختصاص دهد. بیشترین انرژی مصرفی با مقادیر 79 و 67 مگاژول بر کیلوگرم آب به ترتیب متعلق به شلتوک با رطوبت اولیه بالا و پائین بود. در روش خشک‌کردن جریان یک طرفه، شلتوک‌های خشک شده در لایه 10 سانتی‌متری از کف خشک‌کن، کمترین مقدار برنج سالم (65/63 درصد) را داشتند. در هر دو تیمار رطوبتی، نتایج مخلوط لایه‌ها نشان داد خشک‌کردن جریان معکوس یک‌ ساعته با مقادیر 68/68-28/68 درصد دارای کمترین مقدار برنج سالم بودند. هم چنین روش خشک‌کردن اثر قابل ملاحظه‌ای (P >0.05) بر کیفیت پخت نداشت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Reverse airflow drying of steamed paddy and its effect on the rice quality and energy consumption

نویسندگان English

Farzaneh Hasannia 1
kobra Tajaddodi Talab 2
Seyed-Ahmad Shahidi 3
Azade Ghorbani Hasan Saraei 3
1 PhD. Student, Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University
2 Assistant professor, Food Engineering, Rice Research Institute of Iran, Research, Education and Extension Organization
3 Associated professor, Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University
چکیده English

Non-uniform drying and head rice reduction due to non-movement of paddy in common fixed bed dryers is one of the basic problems in rice milling factories. In order to investigate and provide a suitable drying method with the approach of creating uniformity in drying process, reducing losses, and saving energy consumption, a two factorial experiment in completely randomized design (CRD) was used. The factors were the initial moisture content (IMF) of paddy at two levels (16 and 18%) and drying method at 4 levels (one-way air flow, reverse air flow in 1 hour, 2 hours and 3 hours and then continuation of drying process the same as one-way airflow). The same drying air temperature and air velocity was considered for all treatments. In both moisture treatments, three hours reverse air flow drying has the highest head rice (75.7-75.86%) and the lowest energy consumption (41-49 MJ/kg water). The highest energy consumption with the amount of 79 and 67 MJ/kg water was belonging to the paddy with high and low IMC, respectively. In one way airflow, dried paddy in 10 cm from the bottom layers of dryer has the lowest amount of head rice (63.65%). In both moisture treatments, the results of mixed layers showed that one hour reverse air flow drying with values ​​​​of 68.28-68.68% had the lowest head rice. Also, drying method had no significant effect (P>0.05) on the cooking quality.

کلیدواژه‌ها English

Drying
reverse airflow
Steaming
head rice
energy
[1] Gazor, H. R., and Alizadeh, M. R. (2020). Comparison of rotary dryer with conventional fixed bed dryer for paddy drying, milling quality and energy consumption. Agricultural Engineering International: CIGR Journal, 22(2), 264-271.
[2] Sarker, M. S. H., Ibrahim, M. N., Aziz, N. A., and Salleh, P. M. (2014). Energy and rice quality aspects during drying of freshly harvested paddy with industrial inclined bed dryer. Energy conversion and management. 77, 389-395.
[3] Prachayawarakon, S., Sawanduianpen, S., Saynampheung, S., Poolp- atarachewin, T., Soponronnarit, S., and Nathakarakule, A. (2004). Kinetics of colour change during storage of dried garlic slices as affected by relative humidity and temperature. Journal of Food Engineering. 62: 1–7.
[4] Jittanit, W., Saeteaw, N. and Charoenchaisri, A. (2010). Industrial paddy drying & energy saving options. Journal of Stored Products Research. 46(4): 209-213.
[5] Sarker, M. S. H., Ibrahim, M. N., Aziz, N. A., and Punan, M. S. (2015). Overall energy requisite and quality feature of industrial paddy drying. Drying Technology. 33(11), 1360-1368.
[6] Ogura, H., Hamaguchi, N., Kage, H., and Mujumdar, A. S. (2004). Energy and Cost Estimation for Application of Chemical Heat Pump Dryer to Industrial Ceramics Drying. Dry Technol. 22: 307–323.
[7] Mondal, M. H. T., Shiplu, K. S. P., Sen, K. P., Roy, J., and Sarker, M. S. H. (2019). Performance evaluation of small scale energy efficient mixed flow dryer for drying of high moisture paddy. Drying Technology. 37(12): 1541-1550.
[8] Goyal, S. K., Jogdand, S. V., Agrawal, A. K. (2014). Energy Use Pattern in Rice Milling Industries-a Critical Appraisal. J. Food Sci. Technol. 51: 2907–2916.
[9] Ghiasi, M., Ibrahim, M. N., Kadir Basha, R., and Abdul Talib, R. (2016). Energy usage and drying capacity of flat-bed and inclined-bed dryers for rough rice drying. International Food Research Journal, 23:S23-S29.
[10] Souza, G. F. M. V., Miranda, R. F., Lobato, F. S., and Barrozo, M. A. S. (2015). Simultaneous heat and mass transfer in a fixed bed dryer. Applied Thermal Engineering. 90: 38-44.
[11] Bennamoun, L., and Belhamri, A. (2008). Mathematical description of heat and mass transfer during deep bed drying: Effect of product shrinkage on bed porosity. Applied Thermal Engineering. 28(17-18), 2236-2244.
[12] Ling, G., and Jianping, W. (2001). Study on the moisture uniformity of paddy drying technology by employing air direction reversals. J. Zhejiang Univ. 27 (5): 587–590.
[13] Champagne, E. T. (2004). Rice: Chemistry and Technology. 3rd ed. St. Paul, Minn.: American Association of Cereal Chemists.
[14] Chakraverty, A., and P. Singh. (2001). Postharvest Technology: Cereals, Pulses, Fruits, and Vegetables. Enfield, N.H.: Science Publishers.
[15] Kunze, O. R., and Prasad, S. (1978). Grain fissuring potentials in harvesting and drying of rice. Trans. ASAE. 21(2): 361-366.
[16] Lan, Y., and O. R. Kunze. (1996). Fissure resistance characteristics related to moisture adsorption stresses in rice. Trans. ASAE. 39(6): 2169-2174.
[17] Ibrahim, M. N., Talab, K. T., Spotar, S., Muhammad, K., and Talib, R. A. (2013). Effects of airflow reversal in fixed-bed drying of rough rice on head rice yield and drying performance. Transactions of the ASABE. 56(4): 1485-1493.
[18] Tajaddodi, K. (2012). Fixed-bed drying of rice with airflow reversal for product quality and drying performance. Serdang, Malaysia: Universiti Putra Malaysia, PhD thesis.
[19] Latifi, A., and Esmaiili, M. (2019). Effect of Steam Curing of Shiroudi Paddy on Quality, Texture and Thermal Properties of Rice.‌ Food Engineering Research. 67: 61-72.
[20] Zhou, Z., Robards, K., Helliwell, S., Blanchard, C. (2002). Ageing of stored rice: Changes in chemical and physical attributes. Cereal Science. 35(1): 65-78.
[21] Tajaddodi Talab, K. Effect of commercial Guilan and Mazandaran rice varieties steaming on milling quality, physicochemical characteristics and nutritional value of rice and pests during storage. (2020). Final report of project. Rice Research Institute of Iran. Page 87.
[22] Tajaddodi- Talab, K., Alipanah, F., Shahidi, A. (2020). Effect of steaming on bending strength and milling quality of high yield rice variety. Food Engineering Research. 69: 43-56.
[23] Latifi, A., and Esmaiili, M. (2017). Effect of accelerated aging on physicochemical properties of rice cultivar Tarom. Iranian Food Science and Technology Research Journal. 13(5), 798-807.
[24] Gujral, H.S., and Kumar, R. (2003). Effect of accelerated aging on the physicochemical and textural properties of brown and milled rice. Journal of Food Engineering. 59(2-3), 117-121.
[25] Hasannia, F., Tajaddodi Talab, K., Shahidi, S. A., and Ghorbani-Hasansaraei, A. (2022). Effect of steam curing on pasting and textural properties, starch structure and the quality of a local aromatic rice variety. Journal of food processing and preservation. Under press.
[26] Mclean. K. A. (1989). Drying and storing combinable crops. 2nd Edition. Farming Press. United Kingdom.256p.
[27] Islam, M. T., B. P. Marks, and F. W. Bakker-Arkema. (2004). Optimization of commercial ear-corn dryers. Agric. Eng. Intl.: CIGR Ejournal 6: Manuscript FP04007.
[28] Ban, T. (1971). Rice cracking in high-rate drying. Japanese Agric. Res. Qtly. 6: 113-116.
[29] Thakur, A. K. and Gupta, A. K. (2006). Two stage drying of high moisture paddy with intervening rest period. Energy Conversion and Management. 47(18-19): 3069-3083.
[30] Singh, N., Kaur, L., Sohdi, N.S., and Sekhon, K.S. (2005). Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivar. J. Food Chem. 89: 253-259.
[31] Good, H. (2002). Measurement of color in cereal products. Cereal Foods World .4: 5–6.
[32] Kumar, C., Millar, G.J., and Karim, M. A. (2015). Effective diffusivity and evaporative cooling in convective drying of food material. Drying Technology. 33: 227–237.
[33] Zhang, W., Mujumdar, A.S. (1992). Deformation and stress analysis of porous capillary bodies during intermittent volumetric thermal drying. Drying Technology. 10(2): 421–443.
[34] Turner, I.W., Jolly, P.C. (1991). Combined microwave and convective drying of a porous material. Drying Technology. 9 (5), 1209–1269.
[35] Kumoro, A. C., Lukiwati, D. R., Praseptiangga, D., Djaeni, M., Ratnawati, R., Hidayat, J. P., and Utari, F. D. (2019, November). Effect of Bed Thickness on the Drying Rate of Paddy Rice in an Up-flow Fixed Bed Dryer. In Journal of Physics: Conference Series (Vol. 1376, No. 1, p. 012045). IOP Publishing
[36] Rao P.S., Bal S., and Goswami T.K. (2007). Modelling and Optimization of Drying Variables in Thin Layer Drying Of Parboiled Paddy. J. Food Eng. 78: 480–487.
[37] Gunathilake, D. M. C. C., Senanayaka, D.P., Adiletta, G. and Senadeera, W. (2018). Drying of agricultural crops. In book: Advances in Agricultural Machinery and Technologies 1th Edi. Taylor and Francis Group. CRC Press. Pp: 331-365.
[38] Champagne, E. T. (2004). Rice: Chemistry and Technology. 3rd ed. St. Paul, Minn.: American Association of Cereal Chemists.
[39] Juliano, B., Perez, C. M. (1993). Critical moisture content for fissures in rough rice. Cereal Chem.70: 613-615.