Abbasi, S., Naqdi, S., Mousavi Nadoshan, R., (1400). Evaluation of the effect of acid and enzyme extraction methods on the recovery of collagen from the skin of parrotfish (Scarus ghobban) and their structural, chemical, antioxidant and functional characteristics, Journal of Aquaculture Sciences, 9(1), 213-228.
[2] Wang, H., Seekamp, I., Malzahn, A., Hagemann, A., Carvajal, A. K., Slizyte, R., ... & Reitan, K. I. (2019). Growth and nutritional composition of the polychaete Hediste diversicolor (OF Müller, 1776) cultivated on waste from land-based salmon smolt aquaculture. Aquaculture, 502, 232-241.
[3] Girgih, A. T., Udenigwe, C. C., Hasan, F. M., Gill, T. A., & Aluko, R. E. (2013). Antioxidant properties of Salmon (Salmo salar) protein hydrolysate and peptide fractions isolated by reverse-phase HPLC. Food Research International, 52(1), 315-322.
[4] He, S., Franco, C., & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International, 50(1), 289-297.
[5] Taqif, M., Qomi Marzdashti, M., Oysipour, M., (2009). Hydrolyzed protein production from Bluga (Huso huso) using alcalase enzyme. New technologies in the development of aquaculture (Fisheries), 4(1), 35-40.
[6]Li, Z., (2014). Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes, master of science thesis, the university of Dalhousie, Halifax, Canada.
[7] Nikoo, M., Benjakul, S., Ehsani, A., Li, J., Wu, F., Yang, N., ... & Xu, X. (2014). Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. Journal of Functional Foods, 7, 609-620.
[8]Wisuthiphaet, N., Kongruang, S., & Chamcheun, C. (2015). Production of fish protein hydrolysates by acid and enzymatic hydrolysis. Journal of Medical and Biological Engineering, 4 (6), 466-470.
[9]Kim, S.K., (2013). Marin proteins and peptides: biological activities and applications. Wiley-Blackwell publication. P:385-435.
[10]Zhong, S., Ma, C., Lin, Y.C. and Luo, Y. (2011). Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry. Food Chemistry, 126(4): 1636-1642.
[11]Wang, M., Nie, Y., Peng, Y., He, F., Yang, J., Wu, C., Li, X. (2012). Purification, characterization and antitumor activities of a new protein from Syngnathus acus, an official marine fish. Marine Drugs, 10(1): 35-50.
[12] Farvin, K. S., Andersen, L. L., Nielsen, H. H., Jacobsen, C., Jakobsen, G., Johansson, I., & Jessen, F. (2014). Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chemistry, 149, 326-334.
[13] Quirós, A., Chichón, R., Recio, I., & López-Fandiño, R. (2007). The use of high hydrostatic pressure to promote the proteolysis and release of bioactive peptides from ovalbumin. Food Chemistry, 104(4), 1734-1739.
[14] Knežević-Jugović, Z., Stefanović, A., Žuža, M., Milovanović, S., Jakovetić, S., Manojlović, V., & Bugarski, B. (2012). Effects of sonication and high-pressure carbon dioxide processing on enzymatic hydrolysis of egg white proteins. Acta Periodica Technologica, (43), 33-41.
[15] Uluko, H., Zhang, S., Liu, L., Tsakama, M., Lu, J., & Lv, J. (2015). Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. Journal of Functional Foods, 18, 1138-1146.
[16]Nguyen, E., Jones, O., Kim, Y. H. B., Martin-Gonzalez, S., & Liceaga, A.M. (2017). Impact of microwave-assisted enzymatic hydrolysis on functional and antioxidant properties of rainbow trout Oncorhynchus mykiss by-products. Fisheries Science, 83(2), 317-331.
[17]Chen, W., X. Ma, W. Wang, R. Lv, M. Guo, T. Ding, X. Ye, S. Miao, and D. Liu. (2019). Preparation of modified whey protein isolate with gum acacia by ultrasound maillard reaction. Food Hydrocolloids 95: 298–307.
[18]Ketnawa, S. And Liceaga, A.M., (2017). Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food and Bioprocess Technology, 10(3), 582-591.
[19] Stefanović, A. B., Jovanović, J. R., Dojčinović, M. B., Lević, S. M., Nedović, V. A., Bugarski, B. M., & Knežević-Jugović, Z. D. (2017). Effect of the controlled high-intensity ultrasound on improving functionality and structural changes of egg white proteins. Food and Bioprocess Technology, 10(7), 1224-1239.
[20] Tian, S., Du, K., Yan, F., & Li, Y. (2022). Microwave-assisted enzymatic hydrolysis of wheat germ albumin to prepare polypeptides and influence on physical and chemical properties. Food Chemistry, 374, 131707.
[21] Xiao, S., Zhang, D., Pan, D., Zhu, W., Liu, P., Cai, Y., ... & Li, H. (2019). A chloroplast structured photocatalyst enabled by microwave synthesis. Nature Communications, 10(1), 1-10.
[22] Roy, I., Mondal, K., & Gupta, M. N. (2003). Accelerating enzymatic hydrolysis of chitin by microwave pretreatment. Biotechnology Progress, 19(6), 1648-1653.
[23] Yang, M., Huang, F., Liu, C., Zheng, C., Zhou, Q., & Wang, H. (2013). Influence of microwave treatment of rapeseed on minor components content and oxidative stability of oil. Food and Bioprocess Technology, 6(11), 3206-3216.
[24]Esmaeili Kharyeki. M., Rezaei. M., Khodabandeh. S., Motamedzadegan. A., (2018). Antioxidant Activity of Protein Hydrolysate of Skipjack tuna Head. Journal of Fisheries Science and Technology 7(1), 57-64. (in Persian).
[25] Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., (1951). Protein measurement with the folin phenol Reagent. Journal of Biological Chemistry, 193: 265–275.
[26]Hoyle N.T. and Merritt J.H. (1994). Quality of fish protein hydrolysate from herring (Clupea harengus). Journal of Food Science, 59, 76–79.
[27]Mishra K., Ojha H. And Chaudhury N.K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chemistry, 130: 1036-1043.
[28]Alemán, A., Pérez-Santín, E., Bordenave-Juchereau, S., Arnaudin, I., Gómez-Guillén, M. C., & Montero, P. (2011). Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International, 44(4), 1044-1051.
[29]Oyaizu, M., (1986). Studies on products of browning reactions: antioxidative activities of products of Browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44(6): 307–315.
[30] Wang, B., Meng, T., Ma, H., Zhang, Y., Li, Y., Jin, J., & Ye, X. (2016). Mechanism study of dual-frequency ultrasound assisted enzymolysis on rapeseed protein by immobilized Alcalase. Ultrasonics Sonochemistry, 32, 307-313.
[31]Izquierdo, F. J., Alli, I., Yaylayan, V., & Gomez, R. (2007). Microwave-assisted digestion of β-lactoglobulin by pronase, α-chymotrypsin and pepsin. International dairy journal, 17(5), 465-470.
[32]Rejasse, B., Lamare, S., Legoy, M. D., & Besson, T. (2007). Influence of microwave irradiation on enzymatic properties: applications in enzyme chemistry. Journal of Enzyme Inhibition and Medicinal Chemistry, 22(5), 519-527.
[33]Uluko, H., Zhang, S., Liu, L., Chen, J., Sun, Y., Su, Y., ... & Lv, J. (2013). Effects of microwave and ultrasound pretreatments on enzymolysis of milk protein concentrate with different enzymes. International Journal of Food Science & Technology, 48(11), 2250-2257.
[34] Bruno, S. F., Kudre, T. G., & Bhaskar, N. (2019). Effects of different pretreatments and proteases on recovery, umami taste compound contents and antioxidant potentials of Labeo rohita head protein hydrolysates. Journal of Food Science and Technology, 56(4), 1966-1977.
[35]Sila, A., & Bougatef, A. (2016). Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. Journal of Functional Foods, 21, 10-26.
[36]Uluko, H., Liu, L., Li, H., Cui, W., Zhang, S., Zhao, L., ... & Lv, J. (2014). Effect of power ultrasound pretreatment on peptidic profiles and angiotensin converting enzyme inhibition of milk protein concentrate hydrolysates. Journal of the Science of Food and Agriculture, 94(12), 2420-2428.
[37]Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9-10), 949-957.
[38] Yaqubzadeh, Z., and Safari, R., (2017). antioxidant activity of enzyme hydrolysates of rainbow trout Oncorhynchus mykiss, the second international conference on new technologies in science, Amol (in Persian)
[39] Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118(3), 559-565.
[40] Yıldırım, A., Mavi, A., & Kara, A.A. (2001). Determination of antioxidant and antimicrobial activities of rumex crispus l. Extracts. Journal of Agricultural and Food Chemistry, 49(8), 4083-4089.
[41]Guo, L., Hou, H., Li, B., Zhang, Z., Wang, S., & Zhao, X. (2013). Preparation, isolation and identification of iron-chelating peptides derived from Alaska pollock skin. Process Biochemistry, 48(5), 988-993.
[42]Jeevitha, K., Mohana, P.K., Khora, S.S. (2014). Antioxidant activity of fish protein hydrolysates from Sardinella longiceps. International Journal of Drug Development and Research, 6 (4): 137-145.
[43]Miliauskas, G., Van Beek, T. A., Venskutonis, P. R., Linssen, J. P., de Waard, P., & Sudhölter, E. J. (2004). Antioxidant activity of Potentilla fruticosa. Journal of the Science of Food and Agriculture, 84(15), 1997-2009.
[44]Zheng, Z., Zhang, M., Fan, H., & Liu, Y. (2021). Effect of microwave combined with ultrasonic pretreatment on flavor and antioxidant activity of hydrolysates based on enzymatic hydrolysis of bovine bone. Food Bioscience, 44, 101399.
[45] Habinshuti, I., Mu, T. H., & Zhang, M. (2020). Ultrasound microwave-assisted enzymatic production and characterization of antioxidant peptides from sweet potato protein. Ultrasonics Sonochemistry, 69, 105262.