تاثیر پیش‌تیمار مایکروویو بر درجه هیدرولیز و فعالیت آنتی‌اکسیدانی پروتئین هیدرولیز شده اندرونه فیل‌ماهی (Huso huso)

نویسندگان
1 گروه شیلات، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری،ساری ایران.
2 گروه شیلات، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.
چکیده
هدف از پژوهش حاضر بررسی تاثیر پیش­تیمار مایکروویو بر درجه هیدرولیز و فعالیت آنتی اکسیدانی پروتئین هیدرولیز ­شده اندرونه فیل ماهی (Huso huso) بود. بدین منظور، اندرونه ماهی با دو شرایط شامل بدون تیمار با مایکرویو و یا پس از ده دقیقه ­تیمار با مایکروویو (فرکانس 2450 هرتز و دمای 90 درجه سانتی­گراد)، توسط آنزیم آلکالاز با غلظت 2 درصد، دمای 55 درجه سانتی­گراد و pH8 هیدرولیز گردید و سپس درجه هیدرولیز و فعالیت آنتی­اکسیدانی نمونه­های تولید شده مورد ارزیابی قرار گرفت. بر اساس نتایج به­دست آمده، درجه هیدرولیز تیمار تحت مایکروویو نسبت به نمونه بدون ­تیمار به صورت معنا­داری بالاتر بود (05/0p<). همچنین نمونه تولید شده تحت تیمار با مایکروویو فعالیت آنتی­اکسیدانی (توانایی مهار رادیکال­های DPPH و ABTS و قدرت کاهندگی یون آهن) بالاتری نسبت به تیمار کنترل نشان داد (05/0p<). مقادیر IC50 این تیمار در مهار رادیکال­های DPPH و ABTS به ترتیب 25/1 میلی­گرم بر میلی­لیتر و63/1 میلی­گرم بر میلی­لیتر بدست آمد که کمتر از تیمار کنترل بوده است (05/0p<). همچنین در هر دو نمونه با افزایش غلظت، فعالیت آنتی­اکسیدانی به صورت معنا­داری افزایش پیدا کرد (05/0p< ). در مجموع می­توان بیان نمود که پیش­تیمار مایکروویو به مدت 10 دقیقه در دمای 90 درجه سانتی­گراد اثر مطلوبی بر خصوصیات پروتئین هیدرولیز شده اندرونه فیل ماهی داشته که می­تواند بیانگر قابلت کاربرد این فن­آوری در فرآیند تولید پروتئین هیدرولیز شده ماهی باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of microwave pretreatment on degree of hydrolysis and antioxidant activity of Beluga (Huso huso) viscera protein hydrolysate

نویسندگان English

Mina Esmaeili Kharyeki 1
Seyede Mohaddese Hoseyni 2
1 Department of Fisheries, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
2 Department of Fisheries, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari. Iran
چکیده English

The purpose of this study was to investigate the effect of microwave pretreatment on the degree of hydrolysis and antioxidant activity of Beluga (Huso huso) viscera protein hydrolysate. For this purpose, the samples were hydrolyzed after two conditions of pretreatment including no treatment with microwave or after ten minutes treatment with microwave (frequency 2450 Hz and temperature 90 °C), by alkalase enzyme with a concentration of 2%, temperature of 55°C and pH 8, and then the degree of hydrolysis and antioxidant activity of the produced samples were evaluated. According to the results, the degree of hydrolysis after microwave treatment was significantly higher than the sample without microwave treatment (p<0.05). Also, the sample produced after microwave treatment showed higher antioxidant activity (DPPH and ABTS radicals scavenging activity and Fe reduction capacity) compared to the control treatment (p<0.05). The IC50 values ​​of this treatment in inhibiting DPPH and ABTS radicals scavenging activity were obtained as 1.25 mg/ml and 1.63 mg/ml, respectively, which was significantly lower than the control treatment (p<0.05). Also, in both samples, antioxidant activity increased significantly with increasing concentration (p<0.05). In general, it can be stated that 10 minutes of microwave pretreatment at 90 °C has a favorable effect on the properties of Beluga viscera protein hydrolysate which can indicate the applicability of this technology in the production process of fish protein hydrolysate.

کلیدواژه‌ها English

Microwave
Protein hydrolysate
Antioxidant activity
Beluga
Waste
Abbasi, S., Naqdi, S., Mousavi Nadoshan, R., (1400). Evaluation of the effect of acid and enzyme extraction methods on the recovery of collagen from the skin of parrotfish (Scarus ghobban) and their structural, chemical, antioxidant and functional characteristics, Journal of Aquaculture Sciences, 9(1), 213-228.
[2] Wang, H., Seekamp, I., Malzahn, A., Hagemann, A., Carvajal, A. K., Slizyte, R., ... & Reitan, K. I. (2019). Growth and nutritional composition of the polychaete Hediste diversicolor (OF Müller, 1776) cultivated on waste from land-based salmon smolt aquaculture. Aquaculture, 502, 232-241.
[3] Girgih, A. T., Udenigwe, C. C., Hasan, F. M., Gill, T. A., & Aluko, R. E. (2013). Antioxidant properties of Salmon (Salmo salar) protein hydrolysate and peptide fractions isolated by reverse-phase HPLC. Food Research International, 52(1), 315-322.
[4] He, S., Franco, C., & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International, 50(1), 289-297.
[5] Taqif, M., Qomi Marzdashti, M., Oysipour, M., (2009). Hydrolyzed protein production from Bluga (Huso huso) using alcalase enzyme. New technologies in the development of aquaculture (Fisheries), 4(1), 35-40.
[6]Li, Z., (2014). Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes, master of science thesis, the university of Dalhousie, Halifax, Canada.
[7] Nikoo, M., Benjakul, S., Ehsani, A., Li, J., Wu, F., Yang, N., ... & Xu, X. (2014). Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. Journal of Functional Foods, 7, 609-620.
[8]Wisuthiphaet, N., Kongruang, S., & Chamcheun, C. (2015). Production of fish protein hydrolysates by acid and enzymatic hydrolysis. Journal of Medical and Biological Engineering, 4 (6), 466-470.‏
[9]Kim, S.K., (2013). Marin proteins and peptides: biological activities and applications. Wiley-Blackwell publication. P:385-435.
[10]Zhong, S., Ma, C., Lin, Y.C. and Luo, Y. (2011). Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry. Food Chemistry, 126(4): 1636-1642.
[11]Wang, M., Nie, Y., Peng, Y., He, F., Yang, J., Wu, C., Li, X. (2012). Purification, characterization and antitumor activities of a new protein from Syngnathus acus, an official marine fish. Marine Drugs, 10(1): 35-50.
[12] Farvin, K. S., Andersen, L. L., Nielsen, H. H., Jacobsen, C., Jakobsen, G., Johansson, I., & Jessen, F. (2014). Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chemistry, 149, 326-334.
[13] Quirós, A., Chichón, R., Recio, I., & López-Fandiño, R. (2007). The use of high hydrostatic pressure to promote the proteolysis and release of bioactive peptides from ovalbumin. Food Chemistry, 104(4), 1734-1739.
[14] Knežević-Jugović, Z., Stefanović, A., Žuža, M., Milovanović, S., Jakovetić, S., Manojlović, V., & Bugarski, B. (2012). Effects of sonication and high-pressure carbon dioxide processing on enzymatic hydrolysis of egg white proteins. Acta Periodica Technologica, (43), 33-41.
[15] Uluko, H., Zhang, S., Liu, L., Tsakama, M., Lu, J., & Lv, J. (2015). Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. Journal of Functional Foods, 18, 1138-1146.
[16]Nguyen, E., Jones, O., Kim, Y. H. B., Martin-Gonzalez, S., & Liceaga, A.M. (2017). Impact of microwave-assisted enzymatic hydrolysis on functional and antioxidant properties of rainbow trout Oncorhynchus mykiss by-products. Fisheries Science, 83(2), 317-331.‏
[17]Chen, W., X. Ma, W. Wang, R. Lv, M. Guo, T. Ding, X. Ye, S. Miao, and D. Liu. (2019). Preparation of modified whey protein isolate with gum acacia by ultrasound maillard reaction. Food Hydrocolloids 95: 298–307.
[18]Ketnawa, S. And Liceaga, A.M., (2017). Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food and Bioprocess Technology, 10(3), 582-591.
[19] Stefanović, A. B., Jovanović, J. R., Dojčinović, M. B., Lević, S. M., Nedović, V. A., Bugarski, B. M., & Knežević-Jugović, Z. D. (2017). Effect of the controlled high-intensity ultrasound on improving functionality and structural changes of egg white proteins. Food and Bioprocess Technology, 10(7), 1224-1239.
[20] Tian, S., Du, K., Yan, F., & Li, Y. (2022). Microwave-assisted enzymatic hydrolysis of wheat germ albumin to prepare polypeptides and influence on physical and chemical properties. Food Chemistry, 374, 131707.
[21] Xiao, S., Zhang, D., Pan, D., Zhu, W., Liu, P., Cai, Y., ... & Li, H. (2019). A chloroplast structured photocatalyst enabled by microwave synthesis. Nature Communications, 10(1), 1-10.
[22] Roy, I., Mondal, K., & Gupta, M. N. (2003). Accelerating enzymatic hydrolysis of chitin by microwave pretreatment. Biotechnology Progress, 19(6), 1648-1653.
[23] Yang, M., Huang, F., Liu, C., Zheng, C., Zhou, Q., & Wang, H. (2013). Influence of microwave treatment of rapeseed on minor components content and oxidative stability of oil. Food and Bioprocess Technology, 6(11), 3206-3216.
[24]Esmaeili Kharyeki. M., Rezaei. M., Khodabandeh. S., Motamedzadegan. A., (2018). Antioxidant Activity of Protein Hydrolysate of Skipjack tuna Head. Journal of Fisheries Science and Technology 7(1), 57-64. (in Persian).
[25] Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., (1951). Protein measurement with the folin phenol Reagent. Journal of Biological Chemistry, 193: 265–275.
[26]Hoyle N.T. and Merritt J.H. (1994). Quality of fish protein hydrolysate from herring (Clupea harengus). Journal of Food Science, 59, 76–79.
[27]Mishra K., Ojha H. And Chaudhury N.K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chemistry, 130: 1036-1043.
[28]Alemán, A., Pérez-Santín, E., Bordenave-Juchereau, S., Arnaudin, I., Gómez-Guillén, M. C., & Montero, P. (2011). Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International, 44(4), 1044-1051.
[29]Oyaizu, M., (1986). Studies on products of browning reactions: antioxidative activities of products of Browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44(6): 307–315.
[30] Wang, B., Meng, T., Ma, H., Zhang, Y., Li, Y., Jin, J., & Ye, X. (2016). Mechanism study of dual-frequency ultrasound assisted enzymolysis on rapeseed protein by immobilized Alcalase. Ultrasonics Sonochemistry, 32, 307-313.
[31]Izquierdo, F. J., Alli, I., Yaylayan, V., & Gomez, R. (2007). Microwave-assisted digestion of β-lactoglobulin by pronase, α-chymotrypsin and pepsin. International dairy journal, 17(5), 465-470.
[32]Rejasse, B., Lamare, S., Legoy, M. D., & Besson, T. (2007). Influence of microwave irradiation on enzymatic properties: applications in enzyme chemistry. Journal of Enzyme Inhibition and Medicinal Chemistry, 22(5), 519-527.
[33]Uluko, H., Zhang, S., Liu, L., Chen, J., Sun, Y., Su, Y., ... & Lv, J. (2013). Effects of microwave and ultrasound pretreatments on enzymolysis of milk protein concentrate with different enzymes. International Journal of Food Science & Technology, 48(11), 2250-2257.
[34] Bruno, S. F., Kudre, T. G., & Bhaskar, N. (2019). Effects of different pretreatments and proteases on recovery, umami taste compound contents and antioxidant potentials of Labeo rohita head protein hydrolysates. Journal of Food Science and Technology, 56(4), 1966-1977.
[35]Sila, A., & Bougatef, A. (2016). Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. Journal of Functional Foods, 21, 10-26.‏
[36]Uluko, H., Liu, L., Li, H., Cui, W., Zhang, S., Zhao, L., ... & Lv, J. (2014). Effect of power ultrasound pretreatment on peptidic profiles and angiotensin converting enzyme inhibition of milk protein concentrate hydrolysates. Journal of the Science of Food and Agriculture, 94(12), 2420-2428.
[37]Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9-10), 949-957.
[38] Yaqubzadeh, Z., and Safari, R., (2017). antioxidant activity of enzyme hydrolysates of rainbow trout Oncorhynchus mykiss, the second international conference on new technologies in science, Amol (in Persian)
[39] Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118(3), 559-565.
[40] Yıldırım, A., Mavi, A., & Kara, A.A. (2001). Determination of antioxidant and antimicrobial activities of rumex crispus l. Extracts. Journal of Agricultural and Food Chemistry, 49(8), 4083-4089.‏
[41]Guo, L., Hou, H., Li, B., Zhang, Z., Wang, S., & Zhao, X. (2013). Preparation, isolation and identification of iron-chelating peptides derived from Alaska pollock skin. Process Biochemistry, 48(5), 988-993.
[42]Jeevitha, K., Mohana, P.K., Khora, S.S. (2014). Antioxidant activity of fish protein hydrolysates from Sardinella longiceps. International Journal of Drug Development and Research, 6 (4): 137-145.
[43]Miliauskas, G., Van Beek, T. A., Venskutonis, P. R., Linssen, J. P., de Waard, P., & Sudhölter, E. J. (2004). Antioxidant activity of Potentilla fruticosa. Journal of the Science of Food and Agriculture, 84(15), 1997-2009.
[44]Zheng, Z., Zhang, M., Fan, H., & Liu, Y. (2021). Effect of microwave combined with ultrasonic pretreatment on flavor and antioxidant activity of hydrolysates based on enzymatic hydrolysis of bovine bone. Food Bioscience, 44, 101399.
[45] Habinshuti, I., Mu, T. H., & Zhang, M. (2020). Ultrasound microwave-assisted enzymatic production and characterization of antioxidant peptides from sweet potato protein. Ultrasonics Sonochemistry, 69, 105262.