خشک کردن هوای داغ نعناع: مدل‌سازی تغییرات افت وزن، ترکیبات فنولی و خواص آنتی اکسیدانی با روش سطح پاسخ

نویسندگان
1 استادیار، گروه مهندسی علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران.
2 دانشیار، گروه مهندسی علوم و صنایع غذایی، دانشکده فنی و منابع طبیعی تویسرکان، دانشگاه بوعلی سینا، همدان، ایران.
3 استادیار، گروه بهداشت و کنترل کیفی مواد غذایی، دانشکده پیرا دامپزشکی، دانشگاه بوعلی سینا، همدان، ایران
4 دانش آموخته کارشناسی، گروه مهندسی علوم و صنایع غذایی، دانشکده فنی و منابع طبیعی تویسرکان، دانشگاه بوعلی سینا، همدان، ایران.
چکیده
در این تحقیق تأثیر دما و زمان خشک کردن هوای داغ بر میزان افت وزن، ترکیبات فنولی کل و ویژگی‌های آنتی اکسیدانی برگ نعناع بررسی و با روش سطح پاسخ بهینه سازی شد. نتایج نشان داد که با افزایش زمان و دمای خشک کردن میزان افت وزن و ترکیبات فنولی کل برگ نعناع افزایش یافت و زمان خشک کردن تأثیر بیشتری بر تغییرات این دو پارامتر در مقایسه با دمای خشک کردن داشت. ترکیبات فنولی کل نمونه­ها با افزایش زمان خشک کردن افزایش یافت اما با افزایش دمای خشک کردن در ابتدای فرآیند میزان ترکیبات فنولی کل نمونه­ها افزایش یافت. قابلیت مهار رادیکال فعال DPPH نمونه‌ها با افزایش زمان خشک کردن (تا 176 دقیقه) کاهش و سپس با افزایش زمان خشک کردن افزایش یافت. نتایج نشان داد که اعمال دماهای خشک کردن تا 50 درجه سانتی‌گراد باعث افزایش مهار DPPH شد و دماهای خشک کردن بالاتر منجر به کاهش قابلیت مهار رادیکال DPPH نمونه‌ها شد. افزایش زمان و دمای خشک کردن باعث کاهش ظرفیت آنتی اکسیدانی و فعالیت احیاء کنندگی آهن (FRAP) نمونه‌ها شد که شیب تغییرات FRAP و ظرفیت آنتی اکسیدانی نمونه‌ها با تغییرات زمان خشک کردن شدیدتر از تغییرات دمای خشک کردن می‌باشد. بهترین شرایط برای خشک کردن هوای داغ برگ‌های نعناع شامل استفاده از دمای 91/59 درجه سانتی‌گراد و زمان خشک کردن 52 دقیقه می‌باشد و با اعمال شرایط بهینه میزان افت وزن، ترکیبات فنولی کل، درصد مهار رادیکال DPPH نعناع خشک تولیدی به ترتیب برابر 98/69%، 90/6 میلی­گرم بر گرم وزن خشک و 68/89% می‌باشد که مطلوبیت این شرایط بهینه 746/0 می‌باشد. نتایج اعتبار سنجی شرایط بهینه در شرایط واقعی بسیار به نتایج مربوط به شرایط بهینه پیش­بینی شده با روش سطح پاسخ شبیه می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Hot oven drying of mint leaves: modeling weight loss, phenolic compounds and antioxidant properties variation by using response surface method

نویسندگان English

Narjes Aghajani 1
Amir Daraei Garmakhany 2
Abbas Ali Sari 3
Mohammad amin Nourozi 4
1 Assistant Prof. Department of Food Science and Technology, Bahar Faculty of Food Science and Technology, Bu-Ali Sina University, Hamadan, Iran.
2 Associate Prof. Department of Food Science and Technology, Toyserkan Faculty of Engineering and natural resources, Bu-Ali Sina University, Hamadan, Iran.
3 Assistant Professor, Department of food hygiene and quality control, Faculty of veterinary science, Bu-Ali Sina University, Hamedan, Iran.
4 Graduated student, Department of Food Science and Technology, Toyserkan Faculty of Engineering and Natural Resources, Bu-Ali Sina University, Hamadan, Iran.
چکیده English

In this study, the effect of hot oven drying condition (drying temperature and time) on weight loss, total phenolic compounds and antioxidant properties of mint leaf was investigated and optimized by response surface methodology. The results showed that with increasing drying time and temperature, weight loss and total phenolic compounds of mint leaves increased and drying time had more effect on changes of these two parameters compared to drying temperature. Total phenolic compounds of samples increased with increasing drying time, but with increasing drying temperature at the beginning of the process, the amount of total phenolic compounds of samples increased. The DPPH radical scavenging activity of the samples decreased by increasing the drying time (up to 176 min) and then increased with increasing the drying time. The results showed that applying drying temperatures up to 50 °C increased DPPH scavenging activity and higher drying temperatures resulted in a decrease in DPPH scavenging activity of the samples. Increasing the drying time and temperature reduced the antioxidant capacity and ferric reducing power (FRAP) of the samples, which the slope of the changes in the FRAP and antioxidant capacity of the samples with the changes in drying time is more severe than the drying temperature changes. The best conditions for hot oven drying of mint leaves are using drying temprature of 59.91 °C for 52 minutes and by applying the optimal conditions, the amount of weight loss, total phenolic compounds, and DPPH scavenging percentage of produced dry mint were 69.98%, 6.90 mg/gram of dry weight, 89.68% respectively and the desirability of this optimal condition was 0.746. The results of optimal conditions validation in real conditions are very similar to the results related to the predicted optimal conditions by response surface methodology.

کلیدواژه‌ها English

Hot oven drying
Mint leaves
phenolic compounds
Antioxidant properties
Response surface method
[1] Aghajani, N., Kashaninejad, M., Dehghani, A. A., and Daraei Garmakhany, A. 2012. Comparison between artificial neural networks and mathematical models for moisture ratio estimation in two varieties of green malt. Quality Assurance and Safety of Crops and Foods, 4(2): 93-101.
[2] Mwithiga, G., and Olwal, J. O. 2005. The drying kinetics of kale (Brassica oleracea) in a convective hot air dryer. Journal of Food Engineering, 71(4): 373-378.
[3] Vioque, J., Alaiz, M., and Girón-Calle, J. 2012. Nutritional and functional properties of Vicia faba protein isolates and related fractions. Food Chemistry, 132(1): 67–72.
[4] Mazandarani, Z., Aghajani, N., Garmakhany, A. D., Ardalan, M. J. B., and Nouri, M. 2017. Mathematical Modeling of Thin Layer Drying of Pomegranate (Punica granatum L.) Arils: Various Drying Methods. Journal of Agricultural Science and Technology, 19 (7): 1527-1537.
[5] Lee, J., Durst, R. W., and Wrolstad, R. E. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, 88(5): 1269-1278.
[6] Erdogdu, F., and Balaban, M. O. 2003. Complex method for nonlinear constrained multi-criteria (multi-objective function) optimization of thermal processing. Journal of Food Process Engineering, 26(4): 357-375.
[7] Álvarez, J. M., Canessa, P., Mancilla, R. A., Polanco, R., Santibáñez, P. A., and Vicuña, R. 2009. Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor. Fungal Genetics and Biology, 46(1): 104-111.
[8] Mujumdar, A. S. 2007. Book Review: Handbook of Industrial Drying, Third Edition. Drying Technology, 25(6): 1133-1134.
[9] Doymaz, I., Tugrul, N., and Pala, M. 2006. Drying characteristics of dill and parsley leaves. Journal of Food Engineering, 3: 559-565.
[10] Akpinar, K., Bicer, Y., and Cetinkay, F. 2006. Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering, 3: 308-315.
[11] Özbek, B., and Dadali, G. 2007. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering, 4: 541–549.
[12] Aghajani, N., Kashiri, M., Daraei Garmakhany, A., Moharami, M., and Dalvi, M. 2012. Treatments influencing quality attributes and separation time of pomegranate arils. Minerva Biotecnologica, 24(1):1-4.
[13] Shamloo, M. M., Sharifani, M., Daraei Garmakhany, A., and Seifi, E. 2015. Alternation of secondary metabolites and quality attributes in Valencia Orange fruit (Citrus sinensis) as influenced by storage period and edible covers. Journal of Food Science and Technology, 52(4): 1936-1947.
[14] Shahdadi, F., Mirzaei, H.O., and Daraei Garmakhany, A. 2015. Study of phenolic compound and antioxidant activity of date fruit as a function of ripening stages and drying process. Journal of Food Science and Technology, 52: 1814-1819. https://doi.org/10.1007/s13197-013-1177-6.
[15] Yildirim, A., Mavi, A., Oktay, AA., Algur, OF., and Bilaloglu, V. 2000. Comparison of antioxidant and antimicrobial activity of tilia (Tilia argenta Desf. Ex. D.C.), sage (Salvia triloba L.) and black tea (Camellia sinensis L.) extracts. Journal of Agricultural Food Chemistry, 48: 5030–5034.
[16] Shabanian., M, Sari. A A., and Daraei Garmakhany, A. 2021. Optimization of ethanolic extracts of walnut green peel extracted by Microwave method and investigation of their antioxidant properties. Journal of Food Science and Technology (Iran), 18 (115): 283-298.
[17] Azari- Anpar, M., Payeinmahali, H., Daraei Garmakhany, A., and Sadeghi Mahounak, A. 2017. Physicochemical, microbial, antioxidant, and sensory properties of probiotic stirred yoghurt enriched with Aloe vera foliar gel. Journal of Food Processing and Preservation, 41(5): e13209. https://doi.org/10.1111/jfpp.13209.
[18] Hadidi, M., Nouri, M., Sabaghpour, S., and Daraei Garmakhany, A. 2014. Comparison of phenolic compounds and antioxidant properties of black grape extract, concentrate and residual. Journal of Essential Oil Bearing Plants, 17(6): 1181-1186, DOI: 10.1080/0972060X.2014.923346
[19] Madani, A., Choobkar, N., and Daraei Garmakhany, A. 2022. Determination of phenolic compounds and their antioxidant activity of Iranian Allium sativum controversum extracts and their antimicrobial properties in fresh sausages. Food Science and Nutrition, doi.org/10.1002/fsn3.3059.
[20] Moshiri Roshan, A., Sari, A A., Aghajani, N., and Daraei Garmakhany, A. 2020. Ajowan seed ethanolic extract: extract optimization, phenolic compounds and antioxidant properties. Journal of Food Science and Technology(Iran), 17 (104): 51-64.
[21] Shahdadi, F., Mirzaei, H. O., Daraei Garmakhany, A., Mirzaei, H., and Ghafori Khosroshahi, A. 2013. Effect of drying process on antioxidant properties of date palm fruits. Minerva Biotechnologica, 25(4): 235-243.
[22] Salehi, F., Asadi Amirabadi, A., and Kashaninejad, M. 2017. Modeling of Eggplant Drying Process by Infrared System using Genetic Algorithm–Artificial Neural Network Method, Electronic Journal of Food Processing and Preservation, 9 (1): 85-96.
[23] Aghajani, N., Daraei Garmakhany, A., and Hedayati Dezfouli, O. 2021. Response surface modeling of the pomegranate arils (Shahsavar Yazdi cultivar) weight loss, vitamin C and color characteristics variation during the infrared drying process. Journal of Food Science and Technology (Iran), 18 (114): 237-250.
[24] Nouri, M., Kashaninejad, M., Daraei Garmakhany, A., and Bolandi, M. 2012. Optimization of drying process of parsley using the combination of hot air and microwave methods. Food Processing and Preservation Journal, 4(2): 103-122.
[25] Que, F., Mao, L., Fang, X. and Wu, T. 2008. Comparison of hot air drying and freeze drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. International Journal of Food Science & Technology, 43(7): 1195-1201.
[26] Białobrzewski, I. 2006. Determination of the heat transfer coefficient by inverse problem formulation during celery root drying. Journal of Food Engineering, 74(3): 383-391.
[27] Nisha, P., Shinghal, R. S., and Panditt, A. B. 2004. A study on degradation kinetic of ascorbic acid in amla (Phyllanthus emblica L.) during cooking. International Journal of Food Sciences and Nutrition, 55(5): 415-422.
[28] Pedroza, M.A., Carmona, M., Pardo, F., Salinas, M.R., and Zalacain, A. 2012. Waste grape skins thermal dehydration: Potential release of colour, phenolic and aroma compounds into wine. CYTA Journal of Food, 10: 225-234.
[29] Teles, A.S.C., Chávez, D.W.H., Gomes, F.S., Cabral, L.M.C., and Tonon, R.V. 2018. Efect of temperature on the degradation of bioactive compounds of Pinot Noir grape pomace during drying. Brazilian Journal of Food Technology, 21.
[30] Ruttarattanamongkol, K., Chittrakorn, S., Weerawatanakorn, M., and Dangpium, N. 2016. Efect of drying conditions on properties, pigments and antioxidant activity retentions of pretreated orange and purple-fleshed sweet potato flours. Journal of Food Science and Technology, 53: 1811-1822.
[31] Vodnar, D.C., Călinoiu, L.F., Dulf, F.V., Stefănescu, B.E., Cri¸san, G., and Socaciu, C. 2017. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chemistry, 231: 131-140.
[32] Ramón-Gonçalves, M., Alcaraz, L., Pérez-Ferreras, S., León-González, M.E., Rosales-Conrado, N., and López, F.A. 2019. Extraction of polyphenols and synthesis of new activated carbon from spent coffee grounds. Scientific Reports, 9: 1-11.
[33] Devahastin, S., and Niamnuy, C. 2010. Modelling quality changes of fruits and vegetables during drying: A review. International Journal of Food Science and Technology, 45(9): 1755-1767.
[34] Contreras, C., Martín-Esparza, M. E., Chiralt, A., and Martínez-Navarrete, N. 2008. Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering, 88(1): 55-64.
[35] Turkmen, F., Karasu, S., and Karadag, A. 2020. Effects of different drying methods and temperature on the drying behavior and quality attributes of cherry laurel fruit. Processes, 8, 761; doi:10.3390/pr8070761
[36] Hossain, M.B., Barry-Ryan, C., Martin Diana, A.B. and Brunton, N.P. 2010. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry, 123(1): 85-91.
[37] Chan, E.W.C., Lim, Y.Y., Wong, S.K., Lim, K.K, Tan, S.P., Lianto, F.S., Martinov, M., Oztekin, S. and Muller, J. 2007. Medicinal and Aromatic Crops. CRC Press, United States of America. 320 p.