تولید نوشیدنی عملگرا برپایۀ ترکیبات زیست ‌فعال چای سبز و قهوه سبز درهم‌تنیده در ساختار کیتوزوم

نویسندگان
1 گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 گروه علوم و صنایع غذایی، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران
3 گروه علوم و صنایع غذایی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران
چکیده
با هدف بهبود ارزش تغذیه‌ای (کاهش شکر)، پایداری ترکیبات زیست‌فعال، تولید فرآورده نوین و مبتنی بر دانش روز (بکارگیری فناوری ریزپوشانی) و کاهش ضایعات بالقوۀ بخش کشاورزی (نظیر چای سبز و قهوۀ سبز)، نوشیدنی عملگرا برپایۀ شیرین‌کننده استویا با افزودن g/L 84 ریزذرات کیتوزوم درهم‌تنیده شده با ترکیبات زیست‌فعال چای سبز و قهوه سبز، غنی‌سازی شد و ویژگی‌های فیزیکوشیمیایی (pH، اسیدیته، کدورت، ترکیبات فنولی کل و قدرت آنتی‌اکسیدانی) و حسی و چشایی (طعم‌ومزه، رنگ، رایحه، احساس دهانی و پذیرش کلی) فرآورده در طول دورۀ نگهداری (1، 9، 18، 27، 36 و 45 روز) و در دما‌های (5، 25 و oC45) ارزیابی گردید. با وجود اینکه، پارامتر نرخ رهایش ترکیبات فنولی نوشیدنی در درجه‌ حرارت oC45، بعد از 27 روز نگهداری، به‌طور معنی‌دار (05/0>p)، 50%~ افزایش یافت، پارامتر یاد شده به‌ترتیب با نرخ‌های 36%~ و 46%~ در درجه‌ حرارت‌های 5 و oC25 و در شرایط مشابه افزایش یافت. همچنین نتایج نشان داد که پارامتر نسبت بهره‌وری آنتی‌اکسیدان (50EC/TPC) نوشیدنی بعد از 27 روز نگهداری (در درجه‌ حرارت oC25)، در نمونه‌های کنترل و غنی شده با ریزذرات کیتوزوم به ترتیب 06/0 و 71/5 بود. به‌طور‌کلی، ساختار کیتوزومی به‌دلایل زیست‌تخریب‌پذیری، زیست‌سازگاری و عدم سمیت، به عنوان گزینه‌ای مناسب برای پایداری ترکیبات زیست‌فعال و طراحی سیستم‌های مؤثر تحویل دارو پیشنهاد می‌شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production of functional beverage based on cross-linked bioactive compounds of green tea and green coffee in chitosome structure

نویسندگان English

karim moradi kashksara 1
Hamid Tavakolipour 2
Mohsen Mokhtarian 3
1 Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
3 Department of Food Science and Technology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
چکیده English

Aiming to improve nutritional value (reduce sugar), bioactive compounds stability, producing of novel products and based on up-to-date knowledge (applying the encapsulation technology) & reducing of potential pomace in the agricultural part (like green tea & green coffee), a functional beverage based on Stevia sweetener was enriched by adding 84 g/L of cross-linked bioactive compounds of green tea and green coffee in chitosome microcapsule and physicochemical properties (pH, acidity, turbidity, total phenolic compounds & antioxidant power) and organoleptic characteristics (flavor, color, aroma, mouth feel and overall acceptance) of product were evaluated during storage time (1, 9, 18, 27, 36 & 45 days) and at different temperatures (5, 25 & 45oC). While the release rate of beverage phenolic compounds at temperature of 45oC, were significantly (p<0.05) increased to ~50% after 27 days of storage, the noted parameters increased at the rates of ~36 and ~46% at 5 and 25oC respectively at the same conditions. As well, the results show that, the parameter of beverage antioxidant productivity ratio (TPC/EC50) was obtained 0.06 and 5.71 in control and enriched samples, respectively after 27 days of storage (at 25oC). Generally, the chitosomal structure due to biodegradability, biocompatibility and non-toxicity is recommended as a suitable option for stability of bioactive compounds and design of effective systems for drug delivery.


کلیدواژه‌ها English

Functional beverage
Chitosome
Bioactive compounds release
phenolic compounds
Physicochemical properties and sensory evaluation
[1] Jaddi, Z.S., Ahmadi-Dastgerdi, A., Sharafati-Chaloshtori, R. (2020). Production of Functional Beverage of Grape Juice and Lemon Skin Distilment Contained Bacillus coagulans. J. Food Hygiene, 9(36): 33-47. [In Persian]
[2] Siro, I., Kápolna, E., Kápolna, B., Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance-A review. Appetite, 51(3): 456-67.
[3] Safarzadeh-Matin, S., Shahbazi, M. (2013). Modeling and optimization of operation parameters in production of nanocapsules from polyphenol extract from apple industry by-product. Innovative Food Technol., 3(12): 1-13.
[4] Mokhtarian, M., Tavakolipour, H., Jafari-Savareh, S.H., Amiri, M. (2014). Determination of optimal parameters to extraction and formulation of functional drink from green tea and determining its physicochemical and rheological properties. J. Res. Innovation Food Sci. Technol., 3(1): 51-66. [In Persian]
[5] Macheiner, L., Schmidt, A., Schreiner, M., Mayer, H.K. (2019). Green coffee infusion as a source of caffeine and chlorogenic acid. J. Food Composition Analysis, 84: 103307.
[6] Mangku, I.G.P., Wijaya, I.M.A.S., Ganda Putra, G.P., Permana, D.G.M. (2019). The bioactive compounds formation of “Kintamani” arabica coffee bean during dry fermentation. J. Life Sci. Chem., 36 (2): 45-52.
[7] Alavi, S., Haeri, A., Dadashzadeh, S. (2017). Utilization of chitosan-caged liposomes to push the boundaries of therapeutic delivery. Carbohydrate polymers, 157: 991-1012.
[8] Mady, M.M., Darwish, M.M. (2010). Effect of chitosan coating on the characteristics of DPPC liposomes. J. Advanced Res., 1(3): 187-191.
[9] Nag, O.K., Awasthi, V. (2013). Surface engineering of liposomes for stealth behavior. Pharmaceutics, 5(4): 542-69.
[10] Zhuang, J., Ping, Q., Song, Y., Qi, J., Cui, Z. (2010). Effects of chitosan coating on physical properties and pharmacokinetic behavior of mitoxantrone liposomes. Int. J. Nanomedicine, 5: 407.
[11] Mora-huertas, C.E., Fessi, H., Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. Int. J. Pharm., 385: 113-142.
[12] Fang, Z., Bhandari, B. (2010). Encapsulation of polyphenols-A review. Trends Food Sci. Technol., 21: 510-523.
[13] Laroui, H., Wilson, D.S., Dalmasso, G., Salaita, K., Murthy, N., Sitaraman, S.V, Merlin, D. (2011). Nanomedicine in GI. Am. J. Physiol. Gastrointest. Liver Physiol., 300: G371-G383.
[14] Fathi, M., Mozafari, M., Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol., 23(1): 13-27.
[15] Seyedabadi, M.M., Rostami, H., Jafari, S.M., Fathi, M. (2021). Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food Biosci., 40: 100857.
[16] Fathi, M., Samadi, M., Rostami, H., Parastouei, K. (2021). Encapsulation of ginger essential oil in chitosan-based microparticles with improved biological activity and controlled release properties. J. Food Proc. Preserv., 00: e15373.
[17] Gibis, M., Ruedt, C., Weiss, J. (2016). In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Res. Int., 88: 105-13.
[18] Shahgholian, N., Rajabzadeh, G. (2016). Fabrication and characterization of curcumin-loaded albumin/gum arabic coacervate. Food Hydrocolloids, 59: 17-25.
[19] Ni, S., Sun, R., Zhao, G., Xia, Q. (2015). Quercetin loaded nanostructured lipid carrier for food fortification: preparation, characterization and in vitro study. J. Food Process Eng., 38(1): 93-106.
[20] AOAC. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists, (17th ed.); AOAC Press: Arlington, TX.
[21] Bindes, M.M.M., Reis, M.H.M., Cardoso, V.L., Boffito, D.C. (2018). Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural coagulants(chitosan and Moringa oleífera seeds). Ultrasonics Sonochemistry, https://doi.org/10.1016/j.ultsonch.2018.10.014.
[22] Guglielmetti, A., D’ignoti, V., Ghirardello, D., Belviso, S., Zeppa, G. (2017). Optimisation of ultrasound and microwave-assisted extraction of caffeoylquinic acids and caffeine from coffee silver skin using response surface methodology. Italian J. Food Sci., 29: 409-423.
[23] Shabani, M., Mokhtarian, M., Kalbasi-Ashtari, A., Kazempoor, R. (2021). Effects of extracted propolis (Apis mellifera) on physicochemical and microbial properties of rainbow-trout fish burger patties. J. Food Proc. Pres., 00: e16027.
[24] Tan, C., Feng, B., Zhang, X., Xia, W., Xia, S. (2016). Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocolloids, 52: 774-784.
[25] Liang, J., Yan, H., Wang, X., Zhou, Y., Gao, X., Puligundla, P., Wan, X. (2017). Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem., http://dx.doi.org/10.1016/j.foodchem.2017.02.106.
[26] Meng, R., Wu, Z., Xie, Q., Cheng, J., Zhang, B. (2021). Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Food Chem., 340: 127893.
[27] Rajkumar, V., Gunasekaran, C., Amita Paul, C., Dharmaraj, J. (2020). Development of encapsulated peppermint essential oil in chitosan nanoparticles: characterization and biological efficacy against stored-grainpest control. Pesticide Biochem. Physiology, 170: 104679.
[28] Moosazad, S., Ghajarbeigi, P., Mahmoudi, R., Shahsavari, S., Vahidi, R., Soltani, A. (2019). Antibacterial and antioxidant properties of colorant extracted from red onion skin. J. Chem. Health Risks. 9(3), 235-243. https://doi.org/10.22034/jchr.2019.668188.
[29] Uribe, E., Marın, D., Vega-Galvez, A., Quispe Fuentes, I., Rodrıguez, A. (2016). Assessment of vacuum dried peppermint (mentha piperita L.) as a source of natural antioxidants. Food Chem. 90, 559-565. https://doi.org/10.1016/j.foodchem.2015.05.108.
[30] Iranian National Standardization Organization (INSO). (1986). Fruit juices-Test methods. Iran: (number 2685).
[31] Reis, A.S.D., Diedrich, C., Moura, C.D., Pereira, D., Almeida, J.D.F., Silva, L.D.D., Plata-Oviedo, M.S.V., Tavares, R.A.W., Carpes, S.T. (2016). Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at -15oC. LWT-Food Sci. Technol., 1-8.
[32] Moradi Kashksara, K. (2022). Extraction of bioactive compounds of green tea and green coffee extracts by ultrasound and their microencapsulation in the structure of chitosome and investigation of release kinetics in the food system model (Beverage). Ph.D. Thesis on Food Science. Islamic Azad University, North Tehran Branch. [In Persian]
[33] Pavia, D.L., Lampman, G.M., Kriz, G.S., Vyvyan, J.R. (2015). Introduction to Spectroscopy (Fifth Edition). Cengage Learning, USA.
[34] Tai, K., Rappolt, M., Mao, L., Gao, Y., Li, X., Yuan, F. (2020). The stabilization and release performances of curcumin-loaded liposomes coated by high and low molecular weight chitosan. Food Hydrocolloids, 99: 105355.
[35] Liu, F., Avena-Bustillos, R.J., Chiou, B-S., Li, Y., Ma, Y., Williams, T.G., et al. (2017). Controlled-release of tea polyphenol from gelatin films incorporated with different ratios of free/nanoencapsulated tea polyphenols into fatty food simulants. Food Hydrocolloids, 62: 212-21.
[36] Noronha, C.M., de Carvalho, S.M., Lino, R.C., Barreto, P.L.M. (2014). Characterization of antioxidant methylcellulose film incorporated with α-tocopherol nanocapsules. Food Chem., 159: 529-35.
[37] Sánchez-González, L., Cháfer, M., González-Martínez, C., Chiralt, A., Desobry, S. (2011). Study of the release of limonene present in chitosan films enriched with bergamot oil in food simulants. J. Food Eng., 105(1): 138-43.