بهینه‌سازی رشد اسپیرولینا پلاتنسیس و تولید رنگدانه های طبیعی با کمک روش سطح پاسخ

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
2 دانشیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
3 گروه علوم خاک، دانشکده کشاورزی و منابع طبیعی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
چکیده
اسپیرولینا پلاتنسیس به دلیل دارا بودن رنگدانه­­های طبیعی با ویژگی­های عملکردی خاص در صنایع مختلف، توجه ویژه­ای را به خود جلب کرده است. در این پژوهش تاثیر پارامترهای ویتامین ب ۱۲ (5/0 تا 5/1 میکروگرم در لیتر)، عصاره ضایعات خرما به عنوان منبع کربن (1 تا 5/1 گرم در لیتر گلوکز) و اوره به عنوان منبع نیتروژن (50 تا 150 میلی گرم در لیتر) نیز به روش خوراک دهی نیمه مداوم در شرایط کشت غوطه­وری بهینه­سازی شد و میزان تولید اسپیرولینا پلاتنسیس و رنگدانه­های فیکوسیانین، آلوفیکوسیانین،کاروتنوئید و کلروفیل در سطح اطمینان 95% مورد بررسی قرار گرفت. یافته‌ها نشان داد که اضافه کردن اوره و عصاره ضایعات خرما باعث افزایش میزان تولید زیست­توده و رنگدانه­های فیکوسیانین، آلوفیکوسیانین، کاروتنوئید وکلروفیل می‌شود. نتایج حاصل از تاثیر ویتامین ب۱۲ نشان داد که این ویتامین در غلظت کم تاثیر مثبت بر تولید اسپیرولینا و رنگدانه های فیکوسیانین، آلوفیکوسیانین، کاروتنوئید و کلروفیل دارد. علاوه‌بر این مشاهده شد که برهمکنش اوره- ضایعات خرما و ویتامین ب۱۲ در غلظت مناسب، تاثیر، افزاینده بر میزان تولید اسپیرولینا و رنگدانه­های فیکوسیانین، آلوفیکوسیانین ، کاروتنوئید و کلروفیل دارد. همچنین استفاده از عصاره ضایعات خرما با ویتامین ب۱۲ باید به صورت بهینه در ارتباط با یکدیگر استفاده شود تا بیشترین بهره­وری تولید زیست­توده و رنگدانه های فیکوسیانین، آلوفیکوسیانین، کاروتنوئید و کلروفیل حاصل شود. درشرایط بهینه کشت در محدوده ویتامین ب ۱۲، 5/0 میکروگرم در لیتر، عصاره ضایعات خرما، 5/1 گرم در لیتر گلوکز، اوره، 150 میلی­گرم در لیتر میزان بیومس، فیکوسیانین، آلوفیکوسیانین، کاروتنوئید و کلروفیل به ترتیب 203 (g/100g)، 128، 42/8 ، 09/4 و 2/7 میلی گرم در لیتر است. بر این اساس می‌توان نتیجه گرفت که وجود ویتامین ب ۱۲ به همراه استفاده از ضایعات خرما شرایط میکسوتروفی را در رشد اسپیرولینا پیلاتنسیس ایجاد می کند که منجر به افزایش تولید زیست توده و رنگدانه­های حاصل می شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of spirulina platensis and natural pigment production by response surfaces production

نویسندگان English

Niloufar Salehian Lenji 1
Mahshid Jahadi 2
mitra ataabadi 3
1 Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Isfahan Branch (Khorasgan), Islamic Azad University, Isfahan, Iran
2 Department of Food Science and Technology, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
3 Department of Soil Science, Faculty of Agriculture and Natural Resources, Isfahan Branch (Khorasgan), Islamic Azad University, Isfahan, Iran
چکیده English

Spirulina platensis has attracted special attention in various industries due to its natural pigments with specific performance characteristics. In this study, the effects of vitamin B12 (0.5 to 1.5 µg/l), date waste extract as a carbon source (1 to 1.5 g/l of glucose), and urea as a source of nitrogen (50 to 150 mg / l) parameters by fed-batch feeding under submerged culture was optimized and the production of Spirulina platensis and natural pigments were examined. The results showed that the addition of urea and date waste extract increased the production of biomass and phycocyanin, allophycocyanin, carotenoids, and chlorophyll. The results of the effect of vitamin B12 showed that this vitamin in low concentration has a positive effect on the production of spirulina and the pigments phycocyanin, allophycocyanin, carotenoids, and chlorophyll. Also, the use of date waste extract with vitamin B12 should be used optimally in combination with each other to achieve the highest production efficiency of biomass and pigments phycocyanin, allophycocyanin, carotenoids, and chlorophyll. At low concentrations of vitamin B12, increasing changes in date waste increase carotenoid production. Also, in low concentrations of date waste, with increasing changes in vitamin B12, carotenoid production increases, but in the highest concentration of these two variables, carotenoid production decreases due to the opposite effect. In high concentrations of vitamin B12, increasing changes in urea increase chlorophyll production. At the optimized condition, (vitamin B12 0.5 µg.l-1, date waste extract 1.5 g.l-1 of glucose, urea 150 mg.l-1) the biomass, phycocyanin, allophycocyanin, carotenoids and chlorophyll contents were 203 (g/100g) 128, 8.42, 4.09 and 7.2 (mg.l-1). It can be concluded that vitamin B12 along with the use of date waste creates mixotrophic conditions in the growth of Spirulina platensis, which leads to increased production of biomass and natural pigments.

کلیدواژه‌ها English

Date waste
Phycocyanin
Spirulina platensis
Submerged fermentation
Vitamin B12
[1] Baneshi F, Azizi M, Saberi M, Farsi M. Gibberellic acid, amino acids (glycine and L-leucine), vitamin B2 and zinc as factors affecting the production pigments by Monascus purpureus in a liquid culture using response surface methodology. African Journal of Biotechnology. 2014;13(13).
[2] Velmurugan P, Hur H, Balachandar V, Kamala-Kannan S, Lee KJ, Lee SM, Chae JC, Shea PJ, Oh BT. Monascus pigment production by solid-state fermentation with corn cob substrate. Journal of bioscience and bioengineering. 2011 Dec 1;112(6):590-4.
[3] Soni RA, Sudhakar K, Rana RS. Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports. 2019 Nov 1;5:327-36.
[4] Doke JM. An improved and efficient method for the extraction of phycocyanin from Spirulina sp. International Journal of Food Engineering. 2005 Dec 5;1(5).
[5] Lima GM, Teixeira PC, Teixeira CM, Filócomo D, Lage CL. Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal research. 2018 Apr 1;31:157-66.
[6] Shi WQ, Li SD, Li GR, Wang WH, Chen QX, Li YQ, Ling XW. Investigation of main factors affecting the growth rate of Spirulina. Optik. 2016 Aug 1;127(16):6688-94.
[7] Tavakoli M, Vali Aftari R. In vitro effects of dates waste on phycocyanin production by Spirulina algae and evaluation of antioxidant activity. Iranian Food Science and Technology. 2018 15(78) :25-31
[8] Helliwell KE, Lawrence AD, Holzer A, Kudahl UJ, Sasso S, Kräutler B, Scanlan DJ, Warren MJ, Smith AG. Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Current Biology. 2016 Apr 25;26(8):999-1008.
[9] Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B 12 through a symbiotic relationship with bacteria. Nature. 2005 Nov;438(7064):90-3.
[10] Baldia SF. Effects of physico-chemical factors and nutrients on the growth of Spirulina platensis isolated from Lake Kojima, Japan. 1991;57(3):481-90.
[11] Shanthi G, Premalatha M, Anantharaman N. Effects of L-amino acids as organic nitrogen source on the growth rate, biochemical composition and polyphenol content of Spirulina platensis. Algal research. 2018 Nov 1;35:471-8.
[12] Soletto D, Binaghi L, Lodi A, Carvalho JC, Converti A. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture. 2005 Jan 3;243(1-4):217-24.
[13] Torabi S, Jahadi M, Ghasemi SN. Effects of Agitation and Aeration on GrowthKinetics of Spirulina platensisandProduction of Natural Pigments in Stirred Photobioreactor. Research and Innovation in Food Science and Technology. 2021 Dec: 19;10(3):261-72
[14] Zhang L, Chen L, Wang J, Chen Y, Gao X, Zhang Z, Liu T. Attached cultivation for improving the biomass productivity of Spirulina platensis. Bioresource technology. 2015 Apr 1;181:136-42.
[15] Banayan S, Jahadi M, Fazel M. Investigation of Influencing Factors on Production of Chlorophyll and Carotenoid Pigments from Spirulina Platensis Using Platelet-Burman Design. Journal of Food Microbiology. 2020. 7(2): 70-81.
[16] da Rosa Andrade M, Vieira Costa JA. Culture of microalga Spirulina platensis in alternative sources of nutrients. Ciência e Agrotecnologia. 2008 Sep 1;32(5):1551-6.
[17] Chojnacka K, Noworyta A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and microbial technology. 2004 Apr 2;34(5):461-5.
[18] Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The plant journal. 2008 May;54(4):621-39.
[19] Griffiths MJ, Harrison ST. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of applied phycology. 2009 Oct;21(5):493-507.
[20] Soheili M, Rezaei K, Mortazavi AS, Khosravi Darani K, Hashemi M, Komili R, Ahmadi N. Production of phycocyanin by the alga Spirulina platensis. Iranian Journal of Nutrition Sciences and Food Industry, 2013 Mar 10;7(5):787-97
[21] Göksan T, Ak İ, Kılıç C. Growth characteristics of the alga Haematococcus pluvialis flotow as affected by nitrogen source, vitamin, light and aeration. Turkish Journal of Fisheries and Aquatic Sciences. 2011 Sep 1;11(3).
[22] Al-Farsi M, Alasalvar C, Al-Abid M, Al-Shoaily K, Al-Amry M, Al-Rawahy F. Compositional and functional characteristics of dates, syrups, and their by-products. Food chemistry. 2007 Jan 1;104(3):943-7.
[23] Faraji D, Rezaei K, Kalantari M, Hashemi Ravan M, Gol Makani M, Faraji N. Optimization of different conditions (temperature, change of light intensity, culture methods (discontinuous and semi-continuous) and type of carbon source) for maximum phycocyanin production by the microalgae Spirulina platensis (Arthrospira platensis). Food Science and Nutrition. 2015. 12 (1): 91-99.
[24] Chen F, Zhang Y. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme and microbial technology. 1997 Feb 15;20(3):221-4.
[25] Marquez FJ, Nishio N, Nagai S, Sasaki K. Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental and Clean Technology. 1995 Feb;62(2):159-64.
[26] Gargij Jaski M, Yahya M, Rouhani Qadiklayi K, Salarzadeh O'R. The effect of different nitrogen sources on the amount of biomass and protein content of green-blue alga Spirulina platensis. Iranian Journal of Fisheries. 2019. 27 (6): 57-65
[27] Ajayan KV, Selvaraju M, Thirugnanamoorthy K. Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: An in-vitro study. Biomass and bioenergy. 2012 Dec 1;47:436-41.
[28] Hyperproduction of phycobiliproteins by the cyanobacterium Anabaena fertilissima PUPCCC 410.5 under optimized culture conditions.
[29] Kovač D, Babić O, Milovanović I, Mišan A, Simeunović J. The production of biomass and phycobiliprotein pigments in filamentous cyanobacteria: the impact of light and carbon sources. Applied Biochemistry and Microbiology. 2017 Sep;53(5):539-45.
[30] Banayan S, Jahadi M, Khosravi_darani K, Pigment Productions by Spirulina platensis as a Renewable Resource. 10.30491/JABR.2021.292076.1406
[31] Sujatha K, Nagarajan P. Influence of different carbon concentrations on growth and biochemical constituents of Spirulina platensis ( Geitler ). J Ecotoxicol Environ Monit. 2013. 21(4): 249–252.
[32] Deamici KM, Santos LO, Costa JA. Magnetic field action on outdoor and indoor cultures of Spirulina: Evaluation of growth, medium consumption and protein profile. Bioresource technology. 2018 Feb 1;249:168-74.
[33] Carvalho JC, Pandey AS, Babitha SU, Soccol CR. Production of Monascus biopigments: an overview. Agro Food Industry Hi-Tech. 2003 Nov 1;14(6):37-43.