تأثیر پوشش خوراکی پکتین نانو کیتوزان حاوی اسانس مریم گلی بر خصوصیات فیزیکوشیمیایی و زمان ماندگاری انگور سیاه

نویسندگان
دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
چکیده
در سال­های اخیر استفاده از مواد طبیعی در کنار استفاده از تکنولوژی­های نوین که علاوه بر افزایش عمر ماندگاری باعث حفظ خواص کیفی و ارزش تغذیه­ای محصولات شوند، اهمیت دو چندان پیدا کرده است. این آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا شد. بر اساس نتایج به دست آمده افزایش مدت زمان نگهداری باعث کاهش رطوبت، pH، آنتوسیانین، فنل، رنگ­سنجی و افزایش افت وزن و اسیدیته شد، بیشترین تأثیر در 21 روز نگهداری مشاهده شد. کاربرد پوشش خوراکی پکتین-نانوکیتوزان حاوی اسانس مریم گلی باعث کاهش افت وزن و فعالیت آنتی­ اکسیدانی و افزایش آنتوسیانین، فنل و رنگ سنجی گردید در 7 روز پس از نگهداری کمترین افت وزن به مقدار 3/2 درصد و در 14 و 21 روز پس از نگهداری کمترین افت وزن به مقدار 25/4 و 86/5 درصد را تیمار 70 میلی­گرم در لیتر پکتین با 30 میلی­گرم در لیتر نانو کیتوزان دارا بود. با توجه به نتایج به دست آمده کاربر پوشش خوراکی پکتین-نانوکیتوزان حاوی اسانس مریم گلی به خصوص تیمار 70 میلی­گرم در لیتر پکتین با 30 میلی­گرم در لیتر نانو کیتوزان بیشترین تأثیر را در افزایش ماندگاری انگور سیاه داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effects of edible coating containing nanochitosan/pectin and Salvia officinalis. essential oil on the physicochemical properties and shelf life of black grape

نویسندگان English

Fatemeh Mohadesi khorasani
Shima Yousefi
Weria Weisany
Islamic Azad University, Science and Research Branch, Tehran, Iran
چکیده English

In recent years, the using of natural materials, along with the using of new technologies, which, in addition to increasing the shelf life, maintain the quality properties and nutritional value of the products, it has become doubly important. The results showed that increasing the duration of storage caused a decreasing in moisture, pH, anthocyanin, phenol, colorimetry and increased weight loss and acidity, the most effect was observed in 21 days of storage. The using of edible coating containing nanochitosan/pectin and S. officinalis decreased weight loss and antioxidant activity and increased anthocyanin, phenol and colorimetry. In 7 days after storage, the least weight loss was 2.3% and in 14 and 21 days after storage, the least weight loss was 4.25 and 5.86% in the treatment of 70 mg/lit pectin with 30 mg/lit of nano chitosan. According to the obtained results, the using of edible coating containing nanochitosan/pectin and S. officinalis especially the treatment of 70 mg/lit of pectin with 30 mg/lit of nano-chitosan, had the most effect in increasing the shelf life of black grapes.

کلیدواژه‌ها English

Essential oil
Black grape
Pectin
Chitosan
common sage
[1] Fraige, K., Edenir, R., & Carrilho, E. 2013. Fingerprinting of anthocyanins from grapes produced in Brazil using HPLC-DADMS and exploratory analysis by principal component analysis. Journal of Food Chemistry, 56: 69-75.
[2] Qadri, O.S., Yousuf, B., & Srivastava, A.K. 2015. Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food & Agriculture, 1(1): 1121606.
[3] Liu, X., Jia, Y., Hu. Y., Xia, X., Li, Y., & Zhou, J. 2016. Effect of Citrus wilsonii Tanaka extract combined with alginate-calcium coating on quality maintenance of white shrimps (Litopenaeus vannamei Boone), Food Control, 68: 83-91.
[4] Halevas, E., Christiane, M., Evanthia, N., Vasileios Varsamis, C., Eleftheriadou, D., Graham, E., Georgios Litsardakis, J., Lazari, D., Ypsilantis, K., & Salifoglo, A. 2017. Chitosan encapsulation of essential oil “cocktails” with welldefined binary Zn (II)-Schiff base species targeting antibacterial medicinal nanotechnology. Journal of Inorganic Biochemistry, 10(6): 1-15.
[5] Azeredo, H., Morrugares-Carmona, R., Wellner, N., Cross, K., Bajka, B., & Waldron, K. 2016. Development of pectin films with pomegranate juice and citric acid, Food chemistry, 198: 101-106.
[6] Yossef, M.A. 2014. Comparison of Different Edible Coatings Materials for Improvement of Quality and Shelf Life of Perishable Fruits. Middle East Journal of Applied Sciences, 2: 416-424.
[7] Ghaderi-Ghahfarokhi, M., Barzegar, M., Sahari, M.A., Ahmadi Gavlighi, H., & Gardini, F. 2017. Chitosan-cinnamon essential oil nano-formulation: Application as a novel additive for controlled release and shelf-life extension of beef patties. International Journal of Biological Macromolecules, 16(10): 1-17.
[8] Irkin, R., & Guldas, M. 2014. Chitosan Coating of Red Table Grapes and Fresh-Cut Honey Melons to Inhibit Fusarium oxysporum Growth. Journal of Food Processing and Preservation, 38(4): 1948–1956.
[9] Chaudhary, S., Kumar, S., Kumar, V., & Sharma, R. 2020. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. International Journal of Biological Macromolecules, 152: 154–170.
[10] Mohammadi, A., Hashemi, M., & Hosseini, S.M. 2016. Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber. Innovative Food Science and Emerging Technologies, 33: 580-588.
[11] Fisk, C.L., Silver, A.M., Strik, B.C., & Zhao, Y. 2008. Postharvest quality of hardy kiwifruit (Actinidia arguta ‘Ananasnaya’) associated with packaging and storage conditions. Postharvest Biology and Technology, 47: 338–345.
[12] Abdolahi, M., Rezaei, M., & Farzi, G. 2013. Influence of chitosan/clay functional bionanocomposite activated with rosemary essential oil on the shelf life of fresh Silver carp. International Journal of Food Science & Technology, 49(1): 811-818.
[13] AOAC. 2002. Acidity (Titratable) of Fruit Products. Gaithersburg, MD: Official Methods of Analysis of AOAC International, Official Method, 942.15.
[14] Singleton, V. L. Orthofer. R., & Lamuela-Raventos, R. 1999. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods in Enzymology, 299: 152–178.
[15] Brand-Williams, W., Cuvelier, M.E., & Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1): 25–30.
[16] Rapisarda, P., Fanella, F., & Maccarone, F. 2000. Reliability of analytical methods for determining anthocyanin in Blood Orange Juices. Journal of Agricultural and Food Chemistry, 48: 2249–2252.
[17] Belgheysi, S., Azizi Tabrizzad, M.H., Zohoorian, G., & Hadian, Z. 2008. Assessment of physical properties of whey proteinmonoglyceride edible film and its coating effect on the moisture loss and sensory properties of fresh mutton. Journal of Nutrition Sciences & Food Technology, 3(10): 83- 93.
[18] Xu, W.T., Huang, K.L., Guo, F., Qu, W., Yang, J.J, Liang, Z.H., & and Luo, Y.B. 2007. Postharvest grapefruit seed extract and chitosan treatments of table grapes to control Botrytis cinerea. Postharvest Biology and Technology, 46: 86-94.
[19] Lagnika, C., Zhang, M. & Mothibe, K.J. 2013. Effects of ultrasound and high-pressure argon on physico-chemical properties of white mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biology and Technology, 82: 87-94.
[20] Gao, P., Zhu, Z., & Zhang, P. 2013. Effects of chitosan–glucose complex coating on postharvest quality and shelf life of table grapes. Carbohydrate Polymers, 95: 371-378.
[21] González-Saucedo, A., Barrera-Necha, L.L., Ventura-Aguilar, R.I., Correa-Pacheco, Z.N., Bautista-Baños, S., & Hernández-López, M. 2019. Extension of the postharvest quality of bell pepper by applying nanostructured coatings of chitosan with Byrsonima crassifolia extract (L.) Kunth. Postharvest Biology and Technology, 149: 74-82.
[22] Ismail, B., Haffar, I., Baalbaki, R., & and Henry, J. 2008. Physico-chemical characteristics and sensory quality of two date varieties under commercial and industrial storage conditions. LWT-Food Science and Technology, 41(5): 896-904.
[23] Zhang, Y., Zhang, M., & Yang, H. 2015. Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage. Food Chemistry, 174: 558-563.
[24] Valero, D., & Serrano, M. 2010. Postharvest Biology and Technology for Preserving Fruit Quality. CRC Press, Spain.
[25] Galvis-Sanchez, A.C., Fonseca, S. C., Morais, A.M., & Malcata, F.X. 2003. Physicochemical and sensory evaluation of ‘Rocha’ pear following controlled atmosphere storage. Journal of Food Science, 68: 318-327.
[26] Almeida, J.R., Amico, E.D., Preuss, A., Carbone, F., De Vos, C.R., Deiml, B., & Martens, S. 2007. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria ananassa). Archives of Biochemistry and Biophysics, 465: 61-71.
[27] Rahaiee, S., Shojaosadati, S.A., Hashemi, M., Moini, S., & Razavi, S.H. 2015. Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. International Journal of Biological Macromolecules, 79: 423-432.
[28] Fernandez-Panchon, M.S., Villano, D., Troncoso, A.M., & Garcia-Parrilla, M.C. 2008. Antioxidant activity of phenolic compounds: from in vitro results to in vivo evidence. Critical reviews in Food Science and Nutrition, 48(7): 649-671.
[29] Lydakis, D., & Aked, J. 2003. Vapour heat treatment of Sultanina table grapes. II: Effects on postharvest quality. Postharvest Biology and Technology, 27: 117-126.
[30] Hernandez-Munoz, P., Almenar, E., Del Valle, V., Velez, D., & Gavara, D. 2008. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria × ananassa) quality during refrigerated storage. Food Chemistry, 110: 428–435.
[31] Chien, P.J., Sheu, F., & Lin, H.R. 2007. Coating citrus (Murcott tangor) fruit with low molecular weight chitosan increases postharvest quality and shelf life. Food Chemistry, 100: 1160-1164.