[1] Mercado, V., & Olmos, J. (2022). Bacteriocin Production by Bacillus Species: Isolation, Characterization, and Application. Probiotics and Antimicrobial Proteins , 1-19.
[2] Sabo S da S, Vitolo M, Domínguez González JM, de Souza RP. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res Int 2014; 64: 527-36. doi:10.1016/j.foodres.2014.07.041.
[3] Ahn, H., Kim, J., & Kim, W. J. (2017). Isolation and characterization of bacteriocin-producing Pediococcus acidilactici HW01 from malt and its potential to control beer spoilage lactic acid bacteria. Food Control, 80, 59-66.
[4] Amiri, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M., Rezaei-Mokarram, R., & Sowti-Khiabani, M. (2021). Fermentation optimization for co-production of postbiotics by Bifidobacterium lactis BB12 in cheese whey. Waste and Biomass Valorization, 12(11), 5869-5884.
[5] Amiri, S., & Kazemi, S. (2022). Concept and potential applications of postbiotics in the food industry. Journal of food science and technology (Iran), 19(126), 87-101.
[6] Rezapour, S., Ghahremani, E., & Mardani, M. (2015). Analysis of antibiotic resistance and antimicrobial effects of Enterococcus faecium and Lactococcus lactis isolated from Khorramabad traditional cheeses. Journal of Applied Biotechnology Reports, 2(1), 211-214.
[7] Barbosa, A. A. T., de Melo, M. R., da Silva, C. M. R., Jain, S., & Dolabella, S. S. (2021). Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Critical Reviews in Microbiology, 47(3), 376-385.
[8] Zouhir, A., Hammami, R., Fliss, I., & Hamida, J. B. (2010). A new structure-based classification of Gram-positive bacteriocins. The protein journal, 29(6), 432-439.
[9] Negash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020.
[10] Chien Thang Doan, Thi Ngoc Tran, Thi Thanh Nguyen, Thi Phuong Hanh Tran, Van Bon Nguyen, Trung Dung Tran, Anh Dzung Nguyen, San-Lang Wang. (2021) Production of Sucrolytic Enzyme by Bacillus licheniformis by the Bioconversion of Pomelo Albedo as a Carbon Source. Polymers 13:12, pages 1959.
[11] O’Sullivan, O., Begley, M., Ross, R. P., Cotter, P. D., & Hill, C. (2011). Further Identification of novel lantibiotic operons using LanM-based genome mining. Probiotics and Antimicrobial Proteins, 3(1), 27-40.
[12] Roces, C., Rodríguez, A., & Martínez, B. (2012). Cell wall-active bacteriocins and their applications beyond antibiotic activity. Probiotics and antimicrobial proteins, 4(4), 259-272.
[13] Gholam-Zhiyan, A., Amiri, S., Rezazadeh-Bari, M., & Pirsa, S. (2021). Stability of Bacillus coagulans IBRC-M 10807 and Lactobacillus plantarum PTCC 1058 in milk proteins concentrate (MPC)-based edible film. Journal of Packaging Technology and Research, 5(1), 11-22.
[14] Amiri, S., Nezamdoost-Sani, N., Mostashari, P., McClements, D. J., Marszałek, K., & Mousavi Khaneghah, A. (2022). Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review. Critical Reviews in Food Science and Nutrition, 1-27.
[15] Amiri, S., Sowti Khiabani, M., Rezazadeh Bari, M., & Alizadeh, M. (2019). Production of bacteriocin in batch fermentation of dairy effluents by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12. Journal of food science and technology (Iran), 16(90), 163-175.
[16] Amiri, S., Sowti Khiabani, M., Rezazadeh Bari, M., & Alizadeh, M. (2019). Development of the antioxidant activity in cheese whey and milk permeate using Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12. Journal of food science and technology (Iran), 16(91), 65-79.
[17] Amiri, S., & Rajabi, M. (2022). An overview of the application of natural antimicrobial compounds from plant, animal and microbial origin in foods. Journal of food science and technology (Iran), 18(119), 143-156.
[18] Malik, K. A. (1990). Use of activated charcoal for the preservation of anaerobic phototrophic and other sensitive bacteria by freeze-drying. Journal of Microbiological Methods, 12(2), 117-124.
[19] Van Belkum, M. J., Martin-Visscher, L. A., & Vederas, J. C. (2011). Structure and genetics of circular bacteriocins. Trends in microbiology, 19(8), 411-418.
[20] Senbagam, D., Gurusamy, R., & Senthilkumar, B. (2013). Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. Asian Pacific journal of tropical medicine, 6(12), 934-941.
[21] Sonomoto, K., & Yokota, A. (Eds.). (2011). Lactic acid bacteria and bifidobacteria: current progress in advanced research. Horizon Scientific Press.
[22] Roces, C., Rodríguez, A., & Martínez, B. (2012). Cell wall-active bacteriocins and their applications beyond antibiotic activity. Probiotics and antimicrobial proteins, 4(4), 259-272.
[23] Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Khaledabad, M. A. (2022). Characterization of antimicrobial peptides produced by Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 and their inhibitory effect against foodborne pathogens. LWT, 153, 112449.
[24] Todorov, S. D., Prévost, H., Lebois, M., Dousset, X., LeBlanc, J. G., & Franco, B. D. (2011). Bacteriocinogenic Lactobacillus plantarum ST16Pa isolated from papaya (Carica papaya)—From isolation to application: Characterization of a bacteriocin. Food Research International, 44(5), 1351-1363.
[25] He, L., Chen, W., & Liu, Y. (2006). Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis ZJU12. Microbiological Research, 161(4), 321-326.
[26] Feliatra, F., Muchlisin, Z. A., Teruna, H. Y., Utamy, W. R., Nursyirwani, N., & Dahliaty, A. (2018). Potential of bacteriocins produced by probiotic bacteria isolated from tiger shrimp and prawns as antibacterial to Vibrio, Pseudomonas, and Aeromonas species on fish. F1000Research, 7.
[27] Khochamit, N., Siripornadulsil, S., Sukon, P., & Siripornadulsil, W. (2015). Antibacterial activity and genotypic–phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain. Microbiological research, 170, 36-50.
[28] Kaur, G., Singh, T. P., & Malik, R. K. (2013). Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant variants to common food preservatives. Brazilian Journal of Microbiology, 44(1), 63-71.
[29] Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Alizadeh, M. (2021). Optimization of food-grade medium for co-production of bioactive substances by Lactobacillus acidophilus LA-5 for explaining pharmabiotic mechanisms of probiotic. Journal of Food Science and Technology, 58(11), 1-12.
[30] Pei, J., Li, X., Han, H., & Tao, Y. (2018). Purification and characterization of plantaricin SLG1, a novel bacteriocin produced by Lb. plantarum isolated from yak cheese. Food Control, 84, 111-117.
[31] Kaboré, D., Nielsen, D. S., Sawadogo-Lingani, H., Diawara, B., Dicko, M. H., Jakobsen, M., & Thorsen, L. (2013). Inhibition of Bacillus cereus growth by bacteriocin producing Bacillus subtilis isolated from fermented baobab seeds (maari) is substrate dependent. International journal of food microbiology, 162(1), 114-119
[32] Liu, G., Lv, Y., Li, P., Zhou, K., & Zhang, J. (2008). Pentocin 31-1, an anti-Listeria bacteriocin produced by Lactobacillus pentosus 31-1 isolated from Xuan-Wei Ham, a traditional China fermented meat product. Food Control, 19(4), 353-359.
[33] Martin-Visscher, L. A., Yoganathan, S., Sit, C. S., Lohans, C. T., & Vederas, J. C. (2011). The activity of bacteriocins from Carnobacterium maltaromaticum UAL307 against Gram-negative bacteria in combination with EDTA treatment. FEMS Microbiology Letters, 317(2), 152-159.
[34] Farajinejad, Z., Mohtarami, F., Pirouzifard, M., Amiri, S., & Hamishehkar, H. (2022). Evaluation of the effect of sourdough of whole wheat flour containing fructooligosaccharide and Bacillus coagulans IBRC-M 10807 on bulk bread. Journal of food science and technology (Iran), 19(125), 255-268.
[35] Martinez, R. C. R., Staliano, C. D., Vieira, A. D. S., Villarreal, M. L. M., Todorov, S. D., Saad, S. M. I., & de Melo Franco, B. D. G. (2015). Bacteriocin production and inhibition of Listeria monocytogenes by Lactobacillus sakei subsp. sakei 2a in a potentially synbiotic cheese spread. Food microbiology, 48, 143-152.
[36] Perumal, V., Repally, A., Dasari, A., & Venkatesan, A. (2016). Partial purification and characterization of bacteriocin produced by Enterococcus faecalis DU10 and its probiotic attributes. Preparative Biochemistry and Biotechnology, 46(7), 686-694.