تولید باکتریوسین با استفاده از باسیلوس لکینی‌فورمیس ATCC 9789 و تعیین ویژگی‌های ساختاری و ضدمیکروبی آن

نویسندگان
1 دانش آموخته کارشناسی ارشد، گروه زیست شناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران
2 استاد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
3 استادیار گروه زیست شناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران
4 استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
چکیده
باکتریوسین­ها گروهی از مولکول­های منحصر بفرد هستند که توسط برخی از میکروارگانیسم­ها تولید می­شوند و به عنوان بخشی از ایمنی ذاتی میزبان در نظر گرفته می­شوند. امروزه استفاده از نگهدارنده­های زیستی در صنایع غذایی به طور گسترده در حال افزایش است. در پژوهش حاضر برای تولید باکتریوسین از که باسیلوس لکینی فورمیس ATCC 9789 استفاده شد. فعالیت ضد میکروبی باکتریوسین تولیدی در برابر پاتوژن­های منتقله از غذا بررسی شد. در ادامه پس از خالص سازی، ویژگی­های باکتریوسین تولید شده شامل پایداری در برابر حرارت، pH، آنزیم و اشعه فرابنفش و نیز minimal inhibitory concentration (MIC) و minimal bactericidal concentration (MBC) تعیین شد. همچنین وزن مولکولی، گروه­های عاملی و ویژگی­های دمایی باکتریوسین توسط آزمون sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-Page)، Fourier-transform infrared spectroscopy (FTIR) و Differential scanning calorimetry (DSC) تعیین گردید. این باکتریوسین در حرارت­ها و pHهای مختلف، تحت تابش اشعه فرابنفش و همچنین تحت تیمار با آنزیم­های تریپسین و پپسین پایداری بسیار خوبی نشان دادند. آزمون SDS-Page نشان داد که باکتریوسین تولیدی از دو بخش با وزن مولکولی 17 و 20 کیلودالتون تشکیل شده است. نتایج آنالیز FTIR نشان دهنده ویژگی پپتیدی بود و نتایجDSC دو پیک­های اگزوترمال به ترتیب در 190 و 325 درجه سانتی­گراد داشت. به طور کلی در این پژوهش بعد از استخراج و اطمینان از وجود باکتریوسین، اثر ضد میکروبی آن با تعیین MIC و MBC بر روی پاتوژن­های منتقله از غذا مورد ارزیابی قرار گرفت. نتایج نشان داد که باکتریوسین تولیدی توسط باسیلوس لکینی‌فورمیس دارای اثر ضدمیکروبی قابل توجهی روی باکتری­های پاتوژن­های منتقله از غذا داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production of bacteriocin using Bacillus licheniformis ATCC 9789 and determination of its structural and antimicrobial properties

نویسندگان English

Amin Khalili 1
Mahmoud Rezazadeh Bari 2
Saeed Hesami Tackallou 3
Saber Amiri 4
1 MSc, Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Professor, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Assistant professor, Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
4 Assistant professor, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده English

Bacteriocins are a group of unique molecules that are produced by some microorganisms and are considered as part of the host's innate immunity. Nowadays, the use of biological preservatives in the food industry is increasing widely. In the present study, Bacillus laciniformis ATCC 9789 was used to produce bacteriocin. The antimicrobial activity of produced bacteriocin was investigated against foodborne pathogens. Further, after purification, the characteristics of produced bacteriocin, including stability against heat, pH, enzyme and ultraviolet (UV) rays, as well as minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined. Also, molecular weight, functional groups and temperature characteristics of bacteriocin were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-Page), Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) tests. This bacteriocin had very good stability in different temperatures, pHs and against trypsin and pepsin enzymes and under UV rays. The SDS-Page test showed that the produced bacteriocin consists of two parts with a molecular weight of 17 and 20 kDa. The results of FTIR analysis showed peptide characteristics and DSC results had two exothermic peaks at 190 and 325 ⸰C, respectively. In general, in this research, after extracting and ensuring the existence of bacteriocin, its antimicrobial effect was evaluated by determining MIC and MBC on foodborne pathogens. The results showed that the bacteriocin produced by B. licheniformis had a significant antimicrobial effect on foodborne pathogens.

کلیدواژه‌ها English

Bacteriocin
Bio-preservative
Foodborne pathogens
Bacillus licheniformis
[1] Mercado, V., & Olmos, J. (2022). Bacteriocin Production by Bacillus Species: Isolation, Characterization, and Application. Probiotics and Antimicrobial Proteins , 1-19.
[2] Sabo S da S, Vitolo M, Domínguez González JM, de Souza RP. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res Int 2014; 64: 527-36. doi:10.1016/j.foodres.2014.07.041.
[3] Ahn, H., Kim, J., & Kim, W. J. (2017). Isolation and characterization of bacteriocin-producing Pediococcus acidilactici HW01 from malt and its potential to control beer spoilage lactic acid bacteria. Food Control, 80, 59-66.
[4] Amiri, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M., Rezaei-Mokarram, R., & Sowti-Khiabani, M. (2021). Fermentation optimization for co-production of postbiotics by Bifidobacterium lactis BB12 in cheese whey. Waste and Biomass Valorization, 12(11), 5869-5884.
[5] Amiri, S., & Kazemi, S. (2022). Concept and potential applications of postbiotics in the food industry. Journal of food science and technology (Iran), 19(126), 87-101.
[6] Rezapour, S., Ghahremani, E., & Mardani, M. (2015). Analysis of antibiotic resistance and antimicrobial effects of Enterococcus faecium and Lactococcus lactis isolated from Khorramabad traditional cheeses. Journal of Applied Biotechnology Reports, 2(1), 211-214.
[7] Barbosa, A. A. T., de Melo, M. R., da Silva, C. M. R., Jain, S., & Dolabella, S. S. (2021). Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Critical Reviews in Microbiology, 47(3), 376-385.
[8] Zouhir, A., Hammami, R., Fliss, I., & Hamida, J. B. (2010). A new structure-based classification of Gram-positive bacteriocins. The protein journal, 29(6), 432-439.
[9] Negash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020.
[10] Chien Thang Doan, Thi Ngoc Tran, Thi Thanh Nguyen, Thi Phuong Hanh Tran, Van Bon Nguyen, Trung Dung Tran, Anh Dzung Nguyen, San-Lang Wang. (2021) Production of Sucrolytic Enzyme by Bacillus licheniformis by the Bioconversion of Pomelo Albedo as a Carbon Source. Polymers 13:12, pages 1959.
[11] O’Sullivan, O., Begley, M., Ross, R. P., Cotter, P. D., & Hill, C. (2011). Further Identification of novel lantibiotic operons using LanM-based genome mining. Probiotics and Antimicrobial Proteins, 3(1), 27-40.
[12] Roces, C., Rodríguez, A., & Martínez, B. (2012). Cell wall-active bacteriocins and their applications beyond antibiotic activity. Probiotics and antimicrobial proteins, 4(4), 259-272.
[13] Gholam-Zhiyan, A., Amiri, S., Rezazadeh-Bari, M., & Pirsa, S. (2021). Stability of Bacillus coagulans IBRC-M 10807 and Lactobacillus plantarum PTCC 1058 in milk proteins concentrate (MPC)-based edible film. Journal of Packaging Technology and Research, 5(1), 11-22.
[14] Amiri, S., Nezamdoost-Sani, N., Mostashari, P., McClements, D. J., Marszałek, K., & Mousavi Khaneghah, A. (2022). Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review. Critical Reviews in Food Science and Nutrition, 1-27.
[15] Amiri, S., Sowti Khiabani, M., Rezazadeh Bari, M., & Alizadeh, M. (2019). Production of bacteriocin in batch fermentation of dairy effluents by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12. Journal of food science and technology (Iran), 16(90), 163-175.
[16] Amiri, S., Sowti Khiabani, M., Rezazadeh Bari, M., & Alizadeh, M. (2019). Development of the antioxidant activity in cheese whey and milk permeate using Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12. Journal of food science and technology (Iran), 16(91), 65-79.
[17] Amiri, S., & Rajabi, M. (2022). An overview of the application of natural antimicrobial compounds from plant, animal and microbial origin in foods. Journal of food science and technology (Iran), 18(119), 143-156.
[18] Malik, K. A. (1990). Use of activated charcoal for the preservation of anaerobic phototrophic and other sensitive bacteria by freeze-drying. Journal of Microbiological Methods, 12(2), 117-124.
[19] Van Belkum, M. J., Martin-Visscher, L. A., & Vederas, J. C. (2011). Structure and genetics of circular bacteriocins. Trends in microbiology, 19(8), 411-418.
[20] Senbagam, D., Gurusamy, R., & Senthilkumar, B. (2013). Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. Asian Pacific journal of tropical medicine, 6(12), 934-941.
[21] Sonomoto, K., & Yokota, A. (Eds.). (2011). Lactic acid bacteria and bifidobacteria: current progress in advanced research. Horizon Scientific Press.
[22] Roces, C., Rodríguez, A., & Martínez, B. (2012). Cell wall-active bacteriocins and their applications beyond antibiotic activity. Probiotics and antimicrobial proteins, 4(4), 259-272.
[23] Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Khaledabad, M. A. (2022). Characterization of antimicrobial peptides produced by Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 and their inhibitory effect against foodborne pathogens. LWT, 153, 112449.
[24] Todorov, S. D., Prévost, H., Lebois, M., Dousset, X., LeBlanc, J. G., & Franco, B. D. (2011). Bacteriocinogenic Lactobacillus plantarum ST16Pa isolated from papaya (Carica papaya)—From isolation to application: Characterization of a bacteriocin. Food Research International, 44(5), 1351-1363.
[25] He, L., Chen, W., & Liu, Y. (2006). Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis ZJU12. Microbiological Research, 161(4), 321-326.
[26] Feliatra, F., Muchlisin, Z. A., Teruna, H. Y., Utamy, W. R., Nursyirwani, N., & Dahliaty, A. (2018). Potential of bacteriocins produced by probiotic bacteria isolated from tiger shrimp and prawns as antibacterial to Vibrio, Pseudomonas, and Aeromonas species on fish. F1000Research, 7.
[27] Khochamit, N., Siripornadulsil, S., Sukon, P., & Siripornadulsil, W. (2015). Antibacterial activity and genotypic–phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain. Microbiological research, 170, 36-50.
[28] Kaur, G., Singh, T. P., & Malik, R. K. (2013). Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant variants to common food preservatives. Brazilian Journal of Microbiology, 44(1), 63-71.
[29] Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Alizadeh, M. (2021). Optimization of food-grade medium for co-production of bioactive substances by Lactobacillus acidophilus LA-5 for explaining pharmabiotic mechanisms of probiotic. Journal of Food Science and Technology, 58(11), 1-12.
[30] Pei, J., Li, X., Han, H., & Tao, Y. (2018). Purification and characterization of plantaricin SLG1, a novel bacteriocin produced by Lb. plantarum isolated from yak cheese. Food Control, 84, 111-117.
[31] Kaboré, D., Nielsen, D. S., Sawadogo-Lingani, H., Diawara, B., Dicko, M. H., Jakobsen, M., & Thorsen, L. (2013). Inhibition of Bacillus cereus growth by bacteriocin producing Bacillus subtilis isolated from fermented baobab seeds (maari) is substrate dependent. International journal of food microbiology, 162(1), 114-119
[32] Liu, G., Lv, Y., Li, P., Zhou, K., & Zhang, J. (2008). Pentocin 31-1, an anti-Listeria bacteriocin produced by Lactobacillus pentosus 31-1 isolated from Xuan-Wei Ham, a traditional China fermented meat product. Food Control, 19(4), 353-359.
[33] Martin-Visscher, L. A., Yoganathan, S., Sit, C. S., Lohans, C. T., & Vederas, J. C. (2011). The activity of bacteriocins from Carnobacterium maltaromaticum UAL307 against Gram-negative bacteria in combination with EDTA treatment. FEMS Microbiology Letters, 317(2), 152-159.
[34] Farajinejad, Z., Mohtarami, F., Pirouzifard, M., Amiri, S., & Hamishehkar, H. (2022). Evaluation of the effect of sourdough of whole wheat flour containing fructooligosaccharide and Bacillus coagulans IBRC-M 10807 on bulk bread. Journal of food science and technology (Iran), 19(125), 255-268.
[35] Martinez, R. C. R., Staliano, C. D., Vieira, A. D. S., Villarreal, M. L. M., Todorov, S. D., Saad, S. M. I., & de Melo Franco, B. D. G. (2015). Bacteriocin production and inhibition of Listeria monocytogenes by Lactobacillus sakei subsp. sakei 2a in a potentially synbiotic cheese spread. Food microbiology, 48, 143-152.
[36] Perumal, V., Repally, A., Dasari, A., & Venkatesan, A. (2016). Partial purification and characterization of bacteriocin produced by Enterococcus faecalis DU10 and its probiotic attributes. Preparative Biochemistry and Biotechnology, 46(7), 686-694.