تولید نانوکپسول های حامل آستاگزانتین استخراج شده از میکروجلبک هماتوکوکوس (Haematococcus pluvialis) با پوشش ترکیبی مالتودکسترین-کازئینات سدیم و ارزیابی خواص فیزیکی، آنتی اکسیدانی و رنگی محصول

نویسندگان
1 استاد، گروه شیلات، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2 دانش آموخته دکتری تخصصی، گروه فراوری محصولات شیلاتی، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
چکیده
هدف تحقیق حاضر در مرحله اول استخراج آستاگزانتین از میکروجلبک هماتوکوکوس (Haematococcus pluvialis) با روش ترکیبی اسید-استون و ارزیابی بازده فرایند بود. سپس آستاگزانتین مستخرج با پوشش ترکیبی مالتودکسترین-کازئینات سدیم نانو ریزپوشانی و خواص فیزیکی، آنتی­اکسیدانی و رنگی نانوکپسول­ها در کنار فرم خالص رنگدانه (طی یک ماه نگهداری در دمای یخچال) ارزیابی شد. نتایج نشان داد با صابونی­کردن و خالص­سازی اولیه و ثانویه، بازده فرایند استخراج ارتقا و میزان رنگدانه طی مراحل مذکور، از 11/8 به 76/21 میلی­گرم بر گرم افزایش یافت. مطابق یافته­ها، سایز و پتانسیل زتای نانوکپسول­های تولیدشده به ترتیب 1/269 نانومتر و 71/46+ میلی­ولت بود؛ ضمن اینکه بازده فرایند ریزپوشانی 19/85 درصد ثبت شد. پروفیل رهایش آستاگزانتین از نانوکپسول­ها در محیط مشابه معده (SGF) و روده (SIF) نشان داد که رهایش رنگدانه در SGF از 21/3 تا 28/14 و در SIF از 49/18 تا 89/41 درصد متغیر است. بر اساس نتایج، فعالیت مهار رادیکال آزاد DPPH رنگدانه خالص و نانوکپسول­ها (در غلظت­های 100 و 200 میکروگرم بر میلی­لیتر و روزهای صفر، 15 و 30) به ترتیب از حدود 21 تا 57 و 53 تا 70 درصد متغیر بود. این میزان برای قدرت کاهندگی یون فریک به ترتیب از جذب 12/0 تا 54/0 و 55/0 تا 71/0 در طول موج 700 نانومتر گزارش شد. در آزمون فعالیت کلاته­کنندگی فلزات، دامنه تغییرات به ترتیب از 23 تا 52 و 52 تا 75 درصد ثبت گردید. با نانو ریزپوشانی رنگدانه و افزایش غلظت، فعالیت آنتی­اکسیدانی آن به صورت معنی­داری افزایش یافت (05/0>p)؛ همچنین برخلاف فرم خالص آستاگزانتین، فعالیت آنتی­اکسیدانی نانوکپسول­های حامل آن در طول زمان نگهداری، ثابت ماند (05/0<p). ارزیابی رنگ محصول نشان داد که شاخص روشنایی (L*) در نانوکپسول­ها به صورت معنی­داری بیشتر از فرم خالص رنگدانه است (05/0>p)؛ ضمن اینکه شاخص­های رنگی نانوکپسول­ها (بر خلاف آستاگزانتین خالص) با گذشت زمان، تغییر نکردند (05/0<p).
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production of nanocapsules carrying astaxanthin extracted from Haematococcus pluvialis with maltodextrin-sodium caseinate combined coating and evaluation of physical, antioxidant and color properties of the product

نویسندگان English

Sakineh Yeganeh 1
Soheyl Reyhani Poul 2
1 Professor, Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 PhD graduate, Department of Processing of Fishery Products, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده English

The aim of the present research in the first stage was to extract astaxanthin from Haematococcus microalgae (Haematococcus pluvialis) by combined acid-acetone method and evaluate the efficiency of the process. Then, astaxanthin extracted was nanoencapsulated with maltodextrin-sodium caseinate combined coating and physical, antioxidant and color properties of nanocapsules were evaluated along with the pure form of the pigment (during one month of storage at refrigerator temperature). The results showed that with saponification and primary and secondary purification, the efficiency of the extraction process increased and the amount of pigment during the mentioned steps increased from 8.11 to 21.76 mg/g. According to the findings, the size and zeta potential of the produced nanocapsules were 269.1 nm and +46.71 mV, respectively; In addition, the efficiency of the nanoencapsulation process was recorded as 85.19%. The release profile of astaxanthin from nanocapsules in Simulated Gastric Fluid (SGF) and Simulated Intestinal Fluid (SIF) showed that the release of the pigment varies from 3.21 to 14.28 in SGF and from 18.49 to 41.89% in SIF. Based on the results, the DPPH free radical scavenging activity of pure pigment and nanocapsules (at concentrations of 100 and 200 μg/ml and 0, 15 and 30 days) was ranged from about 21 to 57 and 53 to 70%, respectively. This amount for the reduction power of ferric ion was reported from 0.12 to 0.54 and 0.55 to 0.71 absorbance at 700 nm wavelength, respectively. In the metal chelating activity test, the range of changes was recorded from 23 to 52 and 52 to 75%, respectively. With the nanoencapsulation of the pigment and increasing the concentration, its antioxidant activity increased significantly (p<0.05). Also, unlike the pure form of astaxanthin, the antioxidant activity of its carrier nanocapsules remained constant during storage (p>0.05).

کلیدواژه‌ها English

Haematococcus microalgae
astaxanthin
Carrier nanocapsules
Maltodextrin
Physical properties
Antioxidant activity
[1] Safari, R., Mirbakhsh, M., Ghaffari, H., Reyhani Poul, S., Rahmati, R., and Ebrahimzadeh, M. (2022). Effect of temperature, pH, and time factors on the stability and antioxidant activity of the extracted astaxanthin from haematococcus microalgae (Haematococcus pluvialis). Iranian Scientific Fisheries Journal, 31 (1), 109-120 [In Persian].
[2] Safari, R., Raftani Amiri, Z., and Esmaeilzadeh Kenari, R. (2018). Optimizing the extraction of phycocyanin pigment from Spirulina platensis algae and investigating the qualitative properties of the microcoated pigment. phD thesis, Sari Agricultural Sciences and Natural Resources University [In Persian].
[3] Gong, X., and Chen, F. (1998). Influence of medium components on astaxanthin content and production of Haematococcus pluvialis. Process Biochemistry, 33(4), 385-391.
[4] Liu, Y. S., and Wu, J. Y. (2007). Optimization of cell growth and carotenoid production of Xanthophyllomyces dendrorhous through statistical experiment design. Biochemical Engineering Journal, 36(2), 182-189.
[5] Gu, Z., Deming, C., Yongbin, H., Zhigang, C., and Feirong, G. (2008). Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT-Food Science and Technology, 41(6), 1082-1088.
[6] Zhang, B. Y., Geng, Y. H., Li, Z. K., Hu, H. J., and Li, Y. G. (2009). Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture, 295(3-4), 275-281.
[7] Pu, J. (2010). Development of stable microencapsulated astaxanthin powders using extracted astaxanthin from crawfish and shrimp by products. M.Sc. Thesis, Louisiana State University and Agricultural and Mechanical College.
[8] Kobayashi, M., Kurimura, Y., Sakamoto, Y., and Tsuji, Y. (1997). Selective extraction of astaxanthin and chlorophyll from the green alga Haematococcus pluvialis. Biotechnology Techniques, 11(9), 657-660.
[9] Mendes-Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J., and Morais, R. (2001). Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. Journal of Applied Phycology, 13(1), 19-24.
[10] Kang, C. D., and Sim, S. J. (2008). Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnology Letters, 30(3), 441-444.
[11] Machmudah, S., Shotipruk, A., Goto, M., Sasaki, M., and Hirose, T. (2006). Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer. Industrial and Engineering Chemistry Research, 45(10), 3652-3657.
[12] Nobre, B., Marcelo, F., Passos, R., Beirão, L., Palavra, A., Gouveia, L., and Mendes, R. (2006). Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. European Food Research and Technology, 223(6), 787-790.
[13] Pan, J. L., Wang, H. M., Chen, C. Y., and Chang, J. S. (2012). Extraction of astaxanthin from Haematococcus pluvialis by supercritical carbon dioxide fluid with ethanol modifier. Engineering in Life Sciences, 12(6), 638-647.
[14] Ranga Rao, A. (2011). Production of astaxanthin from cultured green alga Haematococcus pluvialis and its biological activities (Doctoral dissertation, University of Mysore).
[15] Dong, S., Huang, Y., Zhang, R., Wang, S., and Liu, Y. (2014). Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis. The Scientific World Journal, 1-7.
[16] Zhou, T., Wang, X., Ju, Y., Shi, C., and Kan, G. (2018). Stability application and research of astaxanthin integrated into food. In IOP Conference Series: Materials Science and Engineering (Vol. 394, No. 2, p. 022007). IOP Publishing.
[17] Tanaka, T., Makita, H., Ohnishi, M., Mori, H., Satoh, K., and HarÃ, A. (1995). Chemoprevention of rat oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin. Cancer Research, 55(18), 4059-4064.
[18] Jacques. T. (1999). The potential preventive effects of vitamins for cataract and age-related macular degeneration. International Journal for Vitamin and Nutrition Research, 69(3), 198-205.
[19] Tracy, R. P. (1999). Inflammation markers and coronary heart disease. Current Opinion In lipidology, 10(5), 435-441.
[20] Guerra, B. A., and Otton, R. (2011). Impact of the carotenoid astaxanthin on phagocytic capacity and ROS/RNS production of human neutrophils treated with free fatty acids and high glucose. International Immunopharmacology, 11(12), 2220-2226.
[21] Mezquita, P. C., Huerta, B. E. B., Ramírez, J. C. P., and Hinojosa, C. P. O. (2015). Milks pigmentation with astaxanthin and determination of colour stability during short period cold storage. Journal of Food Science and Technology, 52(3), 1634-1641.
[22] Hasani, Sh., Shahidi, M., and Ojagh. M. (2018). The production and evaluation of nanoliposomes containing bioactive peptides derived from fish wastes using the alkalase enzyme. Research and Innovation in Food Science and Industry, 8 (1), 31-44 [In Persian].
[23] Sadeghian, Y., Sadeghi, A.R., Ghorbani, M., Alami, M. and Joshaghani, H. (2020). Investigation of the physical, chemical and antioxidant properties of nanoliposomes loaded with quinoa seed hydrolyzed proteins. Iranian Journal of Nutrition Sciences and Food Technology, 15 (2), 71-82 [In Persian].
[24] Ojagh, M., Hasani, Sh. and Hasani, M. (2019). The effect of freezing/thawing and freeze-drying/ rehydration processeson the physical stability of nano-liposomes containing the bioactive peptides. Journal of Innovation in Food Scienceand Technology, 13 (4), 65-81 [In Persian].
[25] Ramezanzade, L., Hosseini, S. F., and Nikkhah, M. (2017). Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chemistry, 234, 220-229.
[26] Mosquera, M., Giménez, B., da Silva, I. M., Boelter, J. F., Montero, P., Gómez-Guillén, M. C., and Brandelli, A. (2014). Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chemistry, 156, 144-150.
[27] Safari, R., Raftani Amiri, Z., Reyhani Poul, S., and Esmaeilzadeh Kenari, R. (2022). Evaluation and comparison of antioxidant and antibacterial properties of phycocyanin extracted from spirulina algae (Spirulina Platensis) in both pure and nanoencasulated forms with maltodextrin-sodium caseinate combination coating. Iranian Journal of Food Science and Technology, 19 (127), 345-358 [In Persian].
[28] Safari, R., Raftani Amiri, Z., Reyhani Poul, S., and Ghaffari, H. (2022). Nanoencapsulation of phycocyanin extracted from the alga Spirulina (Spirulina platensis) and use of resulting nanoparticles in ice cream formulation. Iranian Journal of Food Science and Technology, 123 (19), 145-159 [In Persian].
[29] Machado, A. R., Assis, L. M., Costa, J. A. V., Badiale-Furlong, E., Motta, A. S., Micheletto, Y. M. S., and Souza-Soares, L. A. (2014). Application of sonication and mixing for nanoencapsulation of the cyanobacterium Spirulina platensis in liposomes. International Food Research Journal, 21(6), 2201.
[30] Sallam, K. I. (2007). Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control, 18(5), 566-575.
[31] Sarada, R., Vidhyavathi, R., Usha, D., and Ravishankar, G. A. (2006). An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. Journal of Agricultural and Food Chemistry, 54(20), 7585-7588.
[32] Liu, Z. W., Zeng, X. A., Cheng, J. H., Liu, D. B., and Aadil, R. M. (2018). The efficiency and comparison of novel techniques for cell wall disruption in astaxanthin extraction from Haematococcus pluvialis. International Journal of Food Science and Technology, 53(9), 2212-2219.
[33] Liu, X. J., Wu, Y. H., Zhao, L. C., Xiao, S. Y., Zhou, A. M., and Liu, X. (2011). Determination of astaxanthin in haematococcus pluvialis by first-order derivative spectrophotometry. Journal of AOAC International, 94(6), 1752-1757.
[34] Dewati, P. R., Rohman, A., and Budiman, A. (2020). A Preliminary Study of Extraction and Purification Processes of Astaxanthin from Haematococcus pluvialisas a Natural Antioxidant. In IOP Conference Series: Materials Science and Engineering (Vol. 778, No. 1, p. 012032). IOP Publishing.
[35] Yuan, J. P., and Chen, F. (2000). Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis. Food Chemistry, 68(4), 443-448.
[36] Sun, W., Lin, H., Zhai, Y., Cao, L., Leng, K., and Xing, L. (2015). Separation, Purification, and Identification of (3S, 3′ S)- trans-Astaxanthin from Haematococcus pluvialis. Separation Science and Technology, 50(9), 1377-1383.
[37] Yan, M., Liu, B., Jiao, X., and Qin, S. (2014). Preparation of phycocyanin microcapsules and its properties. Food and Bioproducts Processing, 92(1), 89-97.
[38] Cann, P. A., Read, N. W., Cammack, J., Childs, H., Holden, S., Kashman, R., and Weller, J. (1983). Psychological stress and the passage of a standard meal through the stomach and small intestine in man. Gut, 24(3), 236-240.
[39] Davis, S. S., Hardy, J. G., and Fara, J. W. (1986). Transit of pharmaceutical dosage forms through the small intestine. Gut, 27(8), 886-892.
[40] Jerley, A., and Prabu D. M., (2015). Purification, characterization and antioxidant properties of C-Phycocyanin from Spirulina platensis. Scrutiny International Research Journal of Agriculture, Plant Biotechnology and Bio Products, 2(1), 7-15.
[41] Yen, G. C., and Wu, J. Y. (1999). Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chemistry, 65(3), 375-379.
[42] Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
[43] Decker, E. A., and Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry, 38(3), 674-677.
[44] Kunte, L. A., Gennadios, A., Cuppett, S. L., Hanna, M. A., and Weller, C. L. (1997). Cast films from soy protein isolates and fractions. Cereal Chemistry, 74(2), 115-118.
[45] Sindhu, S., and Sherief, P. M. (2011). Extraction, characterization, antioxidant and anti-inflammatory properties of carotenoids from the shell waste of arabian red shrimp Aristeus alcocki, ramadan 1938. In The open Conference Proceedings Journal (Vol. 2, No. 1).
[46] Miki, W. (1991). Biological functions and activities of animal carotenoids. Pure and Applied Chemistry, 63(1), 141-146.
[47] Tan, Y., Ye, Z., Wang, M., Manzoor, M. F., Aadil, R. M., Tan, X., and Liu, Z. (2021). Comparison of different methods for extracting the astaxanthin from Haematococcus pluvialis: Chemical composition and biological activity. Molecules, 26(12), 3569.
[48] Dewi, E. N., Purnamayati, L., and Kurniasih, R. A. (2016). Antioxidant activities of phycocyanin microcapsules using maltodextrin and carrageenan as coating materials. Journal Teknologi, 78(4-2).
[49] Suzery, M., Majid, D., Setyawan, D., and Sutanto, H. (2017). Improvement of stability and antioxidant activities by using phycocyanin-chitosan encapsulation technique. In IOP Conference Series: Earth and Environmental Science (Vol. 55, No. 1, p. 012052). IOP Publishing.