بررسی ویژگی‌های کیفی و میکروبی کرم کاکائو حاوی روغن بذر کتان ریزپوشانی شده (تولید گاناش شکلاتی فراسودمند)

نویسندگان
1 دانشجوی دکتری تخصصی، گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
3 دانشیار گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
4 استادیار گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
5 دانشیار گروه علوم و صنایع غذایی، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران.
چکیده




استفاده از گیاهان دارویی یا اجزای استخراج شده از آن‏ها در بخش­های مختلف صنعت غذا توجه خاصی را به خود اختصاص داده است. از این رو در تحقیق حاضر از روغن بذر کتان در دو فرم آزاد و ریزپوشانی‏شده با آلژینات در فرمولاسیون کرم کاکائو استفاده شد و ویژگی‏های میکروبی و حسی فراورده تولیدی بررسی گردید. هدف از این تحقیق تولید گاناش شکلاتی فراسودمند حاوی نگهدارنده طبیعی بود. براساس نتایج این پژوهش مشخص شد راندمان استخراج روغن بذر کتان 27/73 درصد بود. جزء اصلی روغن بذر کتان اسید آلفا لینولنیک اسید (47/1 درصد) و کمترین اسید چرب شناسایی شده در آن، اسید میریستولئیک (0/06 درصد) بود. همچنین نتایج نشان داد روغن بذر کتان اثرات ضدمیکروبی قابل توجهی بر سالمونلاتیفی، اشریشیا کلی، استافیلوکوکوس اورئوس، آسپرژیلوس نایجر و کاندیدا آلبیکانس داشت. مقاومت باکتری‏های گرم منفی نسبت به روغن بذر کتان در مقایسه با باکتری‏های گرم مثبت بیشتر بود. از سوی دیگر نتایج نیز نشان‏دهنده اثرات ضدمیکروبی کمتر روغن بذر کتان ریزپوشانی‏شده با آلژینات نسبت به فرم آزاد در گاناش شکلاتی بود. این در حالی بود نمونه حاوی 3 درصد روغن بذر کتان ریزپوشانی‏شده نسبت به نمونه حاوی این روغن در فرم آزاد از ویژگی‏های حسی مطلوب‏تری برخوردار بودند. در نهایت می‏توان گفت اگرچه فرم آزاد روغن بذر کتان دارای فعالیت ضدمیکروبی بیشتری بود، اما به منظور محافظت از ترکیبات مؤثره روغن بذر کتان، رهایش کنترل‏شده و بازارپسندی محصول، ریزپوشانی این روغن با آلژینات جهت کاربرد در فرمولاسیون گاناش شکلاتی توصیه می‏گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of qualitative and microbial properties of cocoa cream containing microencapsulated linseed oil (Production of fuctional chocolate ganache)

نویسندگان English

Banafsheh Mohimani 1
shilla safaeian 2
Rezvan Mousavi nadushan 3
Mohammad Rabani 4
Hamid Tavakolipour 5
1 Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
3 Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
4 Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
5 Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran.
چکیده English



The use of medicinal plants or the components extracted from them in different sectors of the food industry has received special attention. Therefore, in the present research, linseed oil was used in two forms, free and microcoated with alginate, in the formulation of cocoa cream. The aim of this research was to produce an functional chocolate ganache containing natural preservatives. The extraction efficiency of linseed oil was 27.73 %. The main component of linseed oil was α-linolenic acid (47.1%) and the least fatty acid detected in it was myristoleic acid (0.06%). The results showed that both evaluated oils had considerable antibacterial effects against tested microorganisms (S. Typhi, E.coli, S. aureus, A. niger, and C. albicans) and gram-negative bacteria were more resistant to linseed oil than gram-positive ones. In this regard. Black seed oil showed higher antibacterial activity and both linseed and black seed oil microcapsules had lower antibacterial effects than their free form. The sample containing 3% encapsulated linseed oil had more favorable sensory peroperties than the sample containing this oil in free form. However, the free form showed higher antibacterial activity but in the regard to the protection of bioactivity of oils from the undesirable condition, controlled release and marketability of product, loading the oils in alginate bead is a suitable way for application of black seed and linseed oil in food products.

کلیدواژه‌ها English

Linseed
Antimicrobial properties
Encapsulation
Quality
Qanache
Functional
[1] Afoakwa MPhil, E. (2016). Cocoa and chocolate consumption–Are there aphrodisiac and other benefits for human health?. South African Journal of Clinical Nutrition, 21(3): 107-113.
[2] Paoletti, R. Poli, A. Conti, A. and Visioli, F. (2012). Chocolate and Health. Springer-Verlag Italia.
[3] Harrington, W. L. (2011). The Effects of Roasting Time and Temperature on the Antioxidant Capacity of Cocoa Beans from Dominican Republic, Ecuador, Haiti, Indonesia, and Ivory Coast. University of Tennessee, Knoxville, M.S. Trace: Tennessee Research and Creative.
[4] Eyre, C. (2008). Functional chocolate creeps up on main steam, UPL.
[5] Watson, R. R., Preedy, V. R . and Zibadi, S. (2013). Polyphenols in human health and disease. New York: Academic Press.
[6] Baser, K. H. C. and Buchbauer, G. editors. (2015). Handbook of Essential Oils: Science, Technology, and Applications. Boca Raton, FL: CRC Press.
[7] Todorovic, V., Redovnikovic, I. R., Todorovic, Z., Jankovic, G., Dodevska, M. and Sobajic, S. (2015). Polyphenols, methylxanthines, and antioxidant capacity of chocolates produced in Serbia. Journal of Food Composition and Analysis, 41 : 137 -143.
[8] Khattab, R. and M. Zeitoun. (2013). Quality evaluation of flaxseed oil obtained by different extraction techniques. LWT Food Science and Technology, 53: 338–345.
[9] Edel, A., Aliani, M. and Pierce, G. N. (2015). Stability of bioactives in flaxseed and flaxseed-fortified foods. Food Research International, Parrt 2: 140-155.
[10] Kajla, P., A. Sharma, and D.R. (2015). Sood, Flaxseed—a potential functional food source. Journal of food science and technology, 52(4): p. 1857-1871.
[11] Rajesha, J., Rao, A. R., Madhusudhun, B. and Karunakumar, M. (2010) Antibacterial Properties of Secoisolariciresinol Diglucoside Isolated from Indian Flaxseed Cultivars. Current Trends in Biotechnology and Pharmacy, 4(1): 551-560.
[12] Lee, B. B., Ravindra, P. and Chan, E. S. (2013). Size and shape of calcium alginate beads produced by extrusion dripping. Chemical Engineering and Technology, 36(10), 1627-1642.
[13] Rajabi, H., Ghorbani, M., Jafari, S. M., Mahoonak, A. S. and Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food hydrocolloids, 51, 327-337.
[14] Shu, B., Wu, S., Dong, L., Wang, Q. and Liu, Q. (2018). Microfluidic synthesis of ca-alginate microcapsules for self-healing of bituminous binder. Materials, 11(4), 630.
[15] Emadzadeh, M. K., Aarabi, A., Aarabi Nazhvani, F., Chiani, M. and Mehrabi, M. R. (2020). Investigation the effect of solvent and extraction method on the amount of phenolic compounds and the antioxidant activity of flax (Linum usitatissimum L.) oil seed. New Cell Mol Biotech, 10(39); 19-27. [In Persian].
[16] Zhang, Z., Wang, L., Li, D., Jiao, S., Dong, X. and Mao, Z. (2008). Ultrasound-assisted extraction of oil from flaxseed. Separation and Purification Technology, 62(1), 192–198.
[17] AOCS. (1997). Official methods and recommended practices of the AOCS. American Oil Chemists’ Society.
[18] Homayouni, A. Ehsani, M.R. Azizi, A. Yarmand, M.S. and Razavi, S.H. (2007). Effect of Lecithin and Calcium Chloride Solution on the Microencapsulation Process Yield of Calcium Alginate Beads. IRAN POLYM J;16(9):597—606. [In Persian].
[19] Huang, X., Kakuda., Y. and Cui., W. (2001). Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food hydrocolloids, 15(4-6): p. 533-542.
[20] Darjani, P., Hosseni Nezhad, M., Kadkhodaee, R. and Milani, E. (2016). Influence of prebiotic and coating materials on morphology and survival of a probiotic strain of Lactobacillus casei exposed to simulated gastrointestinal conditions. LWT, 73: p. 162-167.
[21] Behbahani, B. A., Yazdi, F. T., Vasiee, A. and Mortazavi, S. A. (2018). Oliveria decumbens essential oil: Chemical compositions and antimicrobial activity against the growth of some clinical and standard strains causing infection. Microbial pathogenesis, 114, 449-452.
[22] Wikler, M. and Matthew, A. (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. CLSI (NCCLS). 26(2):9-16.
[23] Kim, Y.J. Kang, S. Kim, D.H. Kim, Y.J. Kim, W.R. and Kim, Y.M. (2017). Calorie reduction of chocolate ganache through substitution of whipped cream. J Ethn Foods. 1;4(1):51–7.
[24] Bayrak, A., Kiralan, M., Ipek, A., Arslan, N., Cosage, B. and Khawar, K. M . (2010). Fatty acid compositions of linseed (Linum usitatissimum L.) genotypes of different origin cultivated in Turkey. Biotechnology & Biotechnological Equipment, 24(2): p. 1836-1842.
[25] Bean, L. and Leeson, S. (2002) Fatty acid profiles of 23 samples of flaxseed collected from commercial feed mills in Ontario in 2001. Journal of applied poultry research, 11(2): p. 209-211.
[26] Kiralan, M., Ozkan, G., Bayrak, A. and Ramadan, M. F. (2014). Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods. Industrial Crops and Products, 57: p. 52-58.
[27] Kiralan, M. (2012) Volatile Compounds of black Cumin seeds (Nigella sativa L.) from microwave‐heating and conventional roasting. Journal of food science, 77(4): p. C481-C484.
[28] Feofilaktova, O., Grashchenkov, D., Karkh, D. and Lukinykh, M. (2020). Creating a functional basis for the production of food emulsions. in E3S Web of Conferences. EDP Sciences.
[29] Kampa, J., Frazier, F. and Rodriguez-Garcia, J. (2022). Physical and Chemical Characterisation of Conventional and Nano/Emulsions: Influence of Vegetable Oils from Different Origins. Foods, 11(5): p. 681.
[30] Smrdel, P., Bogataj, M. and Mrhar, A. (2008).The influence of selected parameters on the size and shape of alginate beads prepared by ionotropic gelation. Scientia Pharmaceutica, 76(1): p. 77-90.
[31] Corstens, M. N., Berton-Carabin, C. C., Elichiry-Ortiz, P., Hol, K., Troost, F. J., Masclee, A. A. M. and Schroen, K. (2017). Emulsion-alginate beads designed to control in vitro intestinal lipolysis: Towards appetite control. Journal of Functional Foods, 2017. 34: p. 319-328.
[32] Mattazi, N., Farah, A., Fadil, M., Chraibi, M. and Benbrahim, K. F. (2015). Essential oils analysis and antibacterial activity of the leaves of Rosmarinus officinalis, Salvia officinalis and Mentha piperita cultivated in Agadir (Morocco). International Journal of Pharmacy and Pharmaceutical Sciences, 7(9): p. 73-9.
[33] Al-Mathkhury, H., Al-Dhamin, J. F., A. S. and Al-Taie. K. L. (2016). Antibacterial and antibiofilm activity of flaxseed oil. Iraqi Journal of Science, 57(2B): p. 1086-1095.
[34] Heyman, H. M., Senejoux, F., Seibert, I., Klimkait, T., Maharaj, V. J. and Meyer, J. J. M. (2015). Identification of anti-HIV active dicaffeoylquinic-and tricaffeoylquinic acids in Helichrysum populifolium by NMR-based metabolomic guided fractionation. Fitoterapia, 103: p. 155-164.
[35] Duffy, C. F. and Power, R. F. (2001). Antioxidant and antimicrobial properties of some Chinese plant extracts. International journal of antimicrobial agents, 17(6): p. 527-529.
[36] Joshi, Y., Garg, R. and Juyal, D. (2014). Evaluation of synergistic antimicrobial activity of Gemifloxacin with Linum usitatissimum seed oil. liver, 2(4).
[37] Haggag, M.G., Shafaa, M. W., Kareem, H. S., El-Gmail, A. M. and El-Hendawy, H. H. (2021). Screening and enhancement of the antimicrobial activity of some plant oils using liposomes as nanoscale carrier. Bulletin of the National Research Centre, 45(1): p. 1-14.
[38] Radünz, M., Trindade, M. L. M. D., Camargo, T. M., Raduz, A. L., Borges, C. D., Gandra, E. A. and Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food chemistry, 276: p. 180-186.
[39] Hashim, A.F., Hamed, S. F., Hamid, H. A. Abdel, H. A., Abd-Elsalam, K. A., Golonka, I., Musia, W. and El-Sherbiny, I. (2019). Antioxidant and antibacterial activities of omega-3 rich oils/curcumin nanoemulsions loaded in chitosan and alginate-based microbeads. International journal of biological macromolecules, 140: p. 682-696.
[40] Gill, A. and Holley, R. (2006). Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. International journal of food microbiology, 108(1): p. 1-9.
[41] Ostrowska-Ligęza, E., Marzec, A., Górska, A., Wirkowska-Wojdyła, M., Bryś, J., Rejch, A., and Czarkowska, K. (2019). A comparative study of thermal and textural properties of milk, white and dark chocolates. Thermochimica Acta, 671, 60–69.
[42] Sangsuwan, J., Pongsapakworawat, T., Bangmo, P. and Sutthasupa, S. (2016). Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT, 74, 14–20.
[43] Perdones, A., Sánchez-González, L., Chiralt, A. and Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32–41.