[1] Fahimitabar, A., Razavian, S. M. H. & Rezaei, S. A. 2021. Application of RSM for optimization of glutamic acid production by Corynebacterium glutamicum in bath culture. Heliyon, 7, 1-7.
[2] Beyreuther, K., Biesalski, H., Fernstrom, J., Grimm, P., Hammes, W., Heinemann, U., Kempski, O., Stehle, P., Steinhart, H. & Walker, R. 2007. Consensus meeting: Monosodium glutamate—An update. European journal of clinical nutrition, 61, 304-313.
[3] Dutta, S., Ray, S. & Nagarajan, K. 2013. Glutamic acid as anticancer agent: An overview. Saudi Pharmaceutical Journal, 21, 337-343.
[4] Zareian, M., Ebrahimpour, A., Abu Bakar, F., Sabo Mohamed, A. K., Forghani, B., Ab-Kadir, M. S. & Saari, N. 2012. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods. International Journal of Molecular Sciences, 13, 5482-5497.
[5] Shen, X. H., Zhou, N. Y. & Liu, S. J. 2012. Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium. Applied Microbiology and Biotechnology, pp, 1-14.
[6] Nadeem, S., Niaz, B., Muzammil, H. M., Rana, S. M., Rajoka, M. I. & Shakoori, A. R. 2011. Optimising Carbon and Nitrogen Sources for L-Glutamic acid Production by Brevibacterium strain NIAB SS-67. Pakistan Journal of Zoology, 43, 285-290.
[7] Sano, C. 2009. History of glutamate production. The American Journal of Clinical Nutrition, 90, 728S–732S.
[8] Lipinski, B., hanson, C., lomax, J., kitinoja, L., waite, R. & searchinger, T. 2013. Reducing Food Loss and Waste. World resource institute, pp, 1-40.
[9] Falah, F., Vasiee, A., Alizadeh Behbahani, B., Tabatabaee Yazdi, F. & Mortazavi, S. A. 2021. Optimization of gamma-aminobutyric acid production by Lactobacillus brevis PML1 in dairy sludge-based culture medium through response surface methodology. Food Sciences & Nutrition, 9, 3317–3326.
[10] Porwal, H. J., Mane, A. V. & Velhal, S. G. 2015. Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resources and Industry, 9, 1–15.
[11] Ravindran, V., Abdollahi, M. R. & Bootwalla, S. M. 2014. Nutrient analysis, metabolizable energy, and digestible amino acids of soybean meals of different origins for broilers. Poultry Science, 93 ,2567–2577.
[12] Stein, H. H., Berger, L. L., Drackley, J. K., Fahey, G. C., Hernot, D. C. & Parsons, C. M. 2008. Nutritional Properties and Feeding Values of Soybeans and Their. Soybeans, Chemistry, Production, Processing, and Utilization, pp, 613-660.
[13] Kocabay, S. & Çetinkaya, S. 2020. Probiotic Properties of a Lactobacillus fermentum Isolated from New-born Faeces. Journal of Oleo Science, pp, 1-6.
[14] Vasiee, A., Alizadeh Behbahani, B., Tabatabaei Yazdi, F., Mortazavi, S. A. & Noorbakhsh, H. 2018. Diversity and probiotic potential of lactic acid bacteria isolated from Horreh, a traditional Iranian fermented food. Probiotics and Antimicrobial Proteins, 10, 258–268.
[15] Kook, M. C. & Cho, S. C. 2013. Production of GABA (gamma amino butyric acid) by lactic acid bacteria. Korean Journal for Food Science of Animal Resources, 33, 377–389.
[16] Liu, W., Chen, X. D., Cheng, Z. & Selomulya, C. 2016. On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering, 169, 189–195.
[17] Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A. & McClements, D.J. 2016. Superior antibacterial activity of nanoemulsion of thymus daenensis essential oil against E. coli. Food Chemistry, 194, 410–415.
[18] Alizadeh Behbahania, B., Noshad, M. & Falah, F. 2019. Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microbial Pathogenesis, 136, 1-6.
[19] Ghazanfari, N., Mortazavi, S. A., Tabatabaei Yazdi, F. & Mohammadi, M. 2020. Microwave-assisted hydrodistillation extraction of essential oil from coriander seeds and evaluation of their composition, antioxidant and antimicrobial activity. Heliyon, 6, 1-9.
[20] Li, X., Shi, X., Jin, Y., Ding, F. & Du, Y. 2013. Controllable antioxidative xylan–chitosan Maillard reaction products used for lipid food storage. Carbohydrate Polymers, 91, 428–433.
[21] Bai, W., Wang, Q., Zeng, X., Fu, J., Liu, Y. & Dong. H. 2017. Antioxidant activities of chicken peptide-Maillard reaction products (CP-MRPS) derived from chicken peptides and D-glucose system. Journal of Food Processing and Preservation, 41: e13041.
[22] Chi, C. H. & Cho, S. J. 2016. Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT -Food Science and Technology, 68, 619–625.
[23] Tanous, C., Chambellon, E., Sepulchre, A. M. & Yvon, M. 2005. The gene encoding the glutamate dehydrogenase in Lactococcus lactis is part of a remnant Tn3 transposon carried by a large plasmid. Journal of Bacteriology, 187, 5019–5022.
[24] Alizadeh Behbahani, B., Jooyandeh, H., Falah, F. & Vasiee, A. 2020. Gamma-aminobutyric acid production by Lactobacillus brevis A3: Optimization of production, antioxidant potential, cell toxicity, and antimicrobial activity. Food Sciences & Nutrition, 8, 5330–5339.
[25] Kukic, J., Popovic, V., Petrovic, S., Mucaji, P., Ciric, A., Stojkovic, D. & Sokovic, M. 2008. Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chemistry, 107, 861–868.