تولید L-گلوتامات در محیط کشت تخمیر حاوی ضایعات غذایی با استفاده از باکتری‌های اسید لاکتیک بومی و مقایسه آن با سویه صنعتی

نویسندگان
دانشگاه فردوسی مشهد
چکیده
L-گلوتامات از فراوان‌ترین اسیدهای آمینه بدن است که نقش مهّمی در فرآیندهای مختلف سلولی دارد و همچنین به عنوان پیش‌ساز مولکول‌های زیست فعّال عمل می‌کند، که با توجه به کاربردهای دارویی و غذایی امروزه خیلی مورد توجّه قرار گرفته است و به عنوان یک اسید آمینه مهّم صنعتی به صورت تجاری تولید می‌شود. در این پژوهش، تولید L-گلوتامات توسط سه باکتری اسید لاکتیک بومی (لاکتوباسیلوس برویسPML1، لاکتوباسیلوس پلانتاروم 1058 و لاکتوباسیلوس فرمنتوم 4-17) در سه سطح درصد لجن لبنی (0, 10, 20%)، سه سطح درصد کنجاله سویا (0, 2.5, 5%) و سه سطح مدت زمان تخمیر (48, 84, 120 hr) با استفاده از روش آماری سطح پاسخ بهینه شد. از کروماتو گرافی لایه نازک برای ارزیابی کیفی و از کروماتوگرافی مایع با کارایی بالا برای تخمین کمی تولید L-گلوتامات استفاده و سپس خصوصیات ضد میکروبی و آنتی‌اکسیدانی عصاره تخمیر مورد ارزیابی قرارگرفت و با نمونه شاهد مقایسه شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production of L-glutamate in fermentation medium containing food waste using native lactic acid bacteria and its comparison with industrial strain

نویسندگان English

Negin Ghazanfari
Fereshteh Falah
Alireza Vasiee
Farideh Tabatabaei yazdi
Ferdowsi university of Mashhad
چکیده English

L-glutamate is one of the most abundant amino acids in the body, which plays an important role in various cellular processes and also acts as a precursor of bioactive molecules, which has received much attention due to its medicinal and food applications today, and as an important amino acid. Industrial is produced commercially. L-glutamate is one of the metabolites produced by these bacteria, which is also biologically active. In this research, the production of L-glutamate by three autochthonous lactic acid bacteria (Lactobacillus brevis PML1, Lactobacillus plantarum 1058 and Lactobacillus fermentum 4-17) at three percentage levels of dairy sludge (0, 10, 20%), three levels of soybean meal (0, 2.5, 5%) and three levels of fermentation time (48, 84, 120 hr) were optimized using RSM. TLC was used for qualitative evaluation and HPLC was used for quantitative estimation of L-glutamate production, and then the antimicrobial and antioxidant properties of the fermentation extract were evaluated and compared with the control sample.

کلیدواژه‌ها English

L-glutamate
native lactic acid bacteria
RSM
Dairy sludge
Soybean meal
[1] Fahimitabar, A., Razavian, S. M. H. & Rezaei, S. A. 2021. Application of RSM for optimization of glutamic acid production by Corynebacterium glutamicum in bath culture. Heliyon, 7, 1-7.
[2] Beyreuther, K., Biesalski, H., Fernstrom, J., Grimm, P., Hammes, W., Heinemann, U., Kempski, O., Stehle, P., Steinhart, H. & Walker, R. 2007. Consensus meeting: Monosodium glutamate—An update. European journal of clinical nutrition, 61, 304-313.
[3] Dutta, S., Ray, S. & Nagarajan, K. 2013. Glutamic acid as anticancer agent: An overview. Saudi Pharmaceutical Journal, 21, 337-343.
[4] Zareian, M., Ebrahimpour, A., Abu Bakar, F., Sabo Mohamed, A. K., Forghani, B., Ab-Kadir, M. S. & Saari, N. 2012. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods. International Journal of Molecular Sciences, 13, 5482-5497.
[5] Shen, X. H., Zhou, N. Y. & Liu, S. J. 2012. Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium. Applied Microbiology and Biotechnology, pp, 1-14.
[6] Nadeem, S., Niaz, B., Muzammil, H. M., Rana, S. M., Rajoka, M. I. & Shakoori, A. R. 2011. Optimising Carbon and Nitrogen Sources for L-Glutamic acid Production by Brevibacterium strain NIAB SS-67. Pakistan Journal of Zoology, 43, 285-290.
[7] Sano, C. 2009. History of glutamate production. The American Journal of Clinical Nutrition, 90, 728S–732S.
[8] Lipinski, B., hanson, C., lomax, J., kitinoja, L., waite, R. & searchinger, T. 2013. Reducing Food Loss and Waste. World resource institute, pp, 1-40.
[9] Falah, F., Vasiee, A., Alizadeh Behbahani, B., Tabatabaee Yazdi, F. & Mortazavi, S. A. 2021. Optimization of gamma-aminobutyric acid production by Lactobacillus brevis PML1 in dairy sludge-based culture medium through response surface methodology. Food Sciences & Nutrition, 9, 3317–3326.
[10] Porwal, H. J., Mane, A. V. & Velhal, S. G. 2015. Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resources and Industry, 9, 1–15.
[11] Ravindran, V., Abdollahi, M. R. & Bootwalla, S. M. 2014. Nutrient analysis, metabolizable energy, and digestible amino acids of soybean meals of different origins for broilers. Poultry Science, 93 ,2567–2577.
[12] Stein, H. H., Berger, L. L., Drackley, J. K., Fahey, G. C., Hernot, D. C. & Parsons, C. M. 2008. Nutritional Properties and Feeding Values of Soybeans and Their. Soybeans, Chemistry, Production, Processing, and Utilization, pp, 613-660.
[13] Kocabay, S. & Çetinkaya, S. 2020. Probiotic Properties of a Lactobacillus fermentum Isolated from New-born Faeces. Journal of Oleo Science, pp, 1-6.
[14] Vasiee, A., Alizadeh Behbahani, B., Tabatabaei Yazdi, F., Mortazavi, S. A. & Noorbakhsh, H. 2018. Diversity and probiotic potential of lactic acid bacteria isolated from Horreh, a traditional Iranian fermented food. Probiotics and Antimicrobial Proteins, 10, 258–268.
[15] Kook, M. C. & Cho, S. C. 2013. Production of GABA (gamma amino butyric acid) by lactic acid bacteria. Korean Journal for Food Science of Animal Resources, 33, 377–389.
[16] Liu, W., Chen, X. D., Cheng, Z. & Selomulya, C. 2016. On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering, 169, 189–195.
[17] Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A. & McClements, D.J. 2016. Superior antibacterial activity of nanoemulsion of thymus daenensis essential oil against E. coli. Food Chemistry, 194, 410–415.
[18] Alizadeh Behbahania, B., Noshad, M. & Falah, F. 2019. Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microbial Pathogenesis, 136, 1-6.
[19] Ghazanfari, N., Mortazavi, S. A., Tabatabaei Yazdi, F. & Mohammadi, M. 2020. Microwave-assisted hydrodistillation extraction of essential oil from coriander seeds and evaluation of their composition, antioxidant and antimicrobial activity. Heliyon, 6, 1-9.
[20] Li, X., Shi, X., Jin, Y., Ding, F. & Du, Y. 2013. Controllable antioxidative xylan–chitosan Maillard reaction products used for lipid food storage. Carbohydrate Polymers, 91, 428–433.
[21] Bai, W., Wang, Q., Zeng, X., Fu, J., Liu, Y. & Dong. H. 2017. Antioxidant activities of chicken peptide-Maillard reaction products (CP-MRPS) derived from chicken peptides and D-glucose system. Journal of Food Processing and Preservation, 41: e13041.
[22] Chi, C. H. & Cho, S. J. 2016. Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT -Food Science and Technology, 68, 619–625.
[23] Tanous, C., Chambellon, E., Sepulchre, A. M. & Yvon, M. 2005. The gene encoding the glutamate dehydrogenase in Lactococcus lactis is part of a remnant Tn3 transposon carried by a large plasmid. Journal of Bacteriology, 187, 5019–5022.
[24] Alizadeh Behbahani, B., Jooyandeh, H., Falah, F. & Vasiee, A. 2020. Gamma-aminobutyric acid production by Lactobacillus brevis A3: Optimization of production, antioxidant potential, cell toxicity, and antimicrobial activity. Food Sciences & Nutrition, 8, 5330–5339.
[25] Kukic, J., Popovic, V., Petrovic, S., Mucaji, P., Ciric, A., Stojkovic, D. & Sokovic, M. 2008. Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chemistry, 107, 861–868.