بهینه سازی شرایط تولید کف و ارزیابی فرآیند خشک کردن کف پوشی قارچ دکمه ای سفید(Agaricusbisporus)

نویسندگان
1 استادیار، گروه علوم تغذیه، دانشکده بهداشت، دانشگاه علوم پزشکی خراسان شمالی، بجنورد، ایران
2 استاد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
3 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
4 دانشجوی دکتری گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
چکیده
اخیرا کیفیت فرآورده های پودری در صنایع غذایی مورد توجه قرار گرفته است. خشک کردن به روش کفپوشی یک روش اقتصادی جایگزین برای خشک کردن به روش پاششی، غلطکی و انجمادی برای تولید پودرهای غذایی است. تخلخل و نسبت سطح به حجم بالا در نمونه های کف در حین خشک شدن کفپوشی، کیفیت محصول نهایی را بهبود می بخشد. در این پژوهش، خصوصیات کف زایی قارچ دکمه ای سفید (Agaricusbisporus) با روش سطح پاسخ مورد تجزیه و تحلیل قرار گرفت.جهت بهینه سازی، محلول صمغ زانتان (XG) بین 05/0- 3/0 درصد وزنی، غلظت سوسپانسیون (آب: پوره قارچ) بین 5/0: 1- 5/3: 1 وزنی/وزنی و محدوده زمان هم زدن بین 2 تا 8 دقیقه در نظر گرفته شده است.بر اساس طرح مرکب مرکزی متمرکز شده(CCD)، بیست آزمایش انجام شد. تجزیه و تحلیل واریانس نشان داد که مدل های درجه دوم اثرات قابل توجهی بر هر دو پاسخ دارند. در این پژوهش، نقطه بهینه در محلول صمغ زانتان 2/0% وزنی/وزنی، غلظت سوسپانسیون (آب: پوره قارچ) 2/2: 1 و زمان هم زدن 19/6 دقیقه و مقادیر پیشبینی شده برای دانسیته کف و میزان مایع جدا شده از کف به ترتیب 56/0 گرم در سانتیمتر و 8/1 میلیلیتربه دست آمد. در مرحله دوم، کف بهینه شده در دماهای 50، 65 و 80 درجه سانتیگراد خشک شد و سپس رفتارخشک شدن کف بهینه شده توسط مدل های مختلف ریاضی بررسی شد. نتایج نشان داد که مدل میدیلی مدلی با دقت بالا برای ارزیابی رفتار خشک کردن کف قارچ است. در مرحله سوم، تأثیر دمای خشک کردن بر برخی ویژگیهای کیفی پودر قارچ خشک شده مورد بررسی قرار گرفت. نتایح نشان داد که با افزایش دما، فعالیت آبی و قابلیت جذب آب کاهش یافت. همچنین پارامتر روشنایی در دمای 65 درجه سانتیگرادبالاتر از سایر دماهای خشک کردن بود. بنابراین قارچ دکمه ای سفید را می توان به پودر تبدیل کرد و به عنوان یک افزودنی کاربردی یا تغذیه ای در انواع محصولات غذایی استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of Foaming Parameters and evaluation Foam-Mat Drying of white button mushroom (Agaricus bisporus) using response surface mythology

نویسندگان English

atena Pasban 1
Mohebbat Mohebbi 2
hashem pourazarang 2
mehdi varidi 3
Arezoo abbasi 4
1 assiastat professor, Department of Nutrition, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
2 Department of Food Science and Technology- Ferdowsi University of Mashhad-Iran
3 Department of Food Science and Technology- Ferdowsi University of Mashhad-Iran
4 Department of Food Science and Technology- Ferdowsi University of Mashhad-Iran
چکیده English

Recently, the quality of powder product was considered in food industry. Foam mat drying is an economical alternative to spray, drum and freeze-drying for the production of food powders. The high porosity and surface-to-volume ratio of foams during foam-mat drying improve final product quality. In this work, foaming properties of white button mushroom(Agaricusbisporus) were analyzedby response surface methodology. For optimization,xanthan gum (XG)solution range was considered between 0.05–0.3% w/w, mushroom concentration (water: mushroom puree) range was considered 1:0.5– 1:3.5 w/w and whipping time range was considered between 2–8 min. Based on face centered central composite design (CCF),twenty tests were done. Analysis of variance showed that the quadratic modelshaveconsiderable effects on both responses.In this research, the optimized pointwasobtainedat xanthan gum solution 0.2% w/w, mushroom concentration (water:mushroom puree) = 1:2.2 and whipping time= 6.19 minand the predicted values for foam density and drainage volumewere0.56 gcm-3 and 1.8 mL, respectively.At the second step, optimized foam dried at 50, 65 and 80°C and then drying behavior of optimized foam was investigated by different mathematical models. The results indicated that theMidilli model is high accurate model for evaluating the drying behavior of mushroom foam. At the third step, the influence of the drying temperatures on some qualitative characteristics of foam-matdried mushroom powder was investigated. It was found, as the temperature increased, water activity and water binding capacity decreased. Also, Lightness parameter for the temperature of 65°Cwas higher than other temperature.So, white button mushrooms can be processed into powder and used as a functional or nutritional addition in a variety of food products.

کلیدواژه‌ها English

button mushroom
foam mat drying
Drying model
Physico chemical properties
1. E. V. Crisan and A. Sands, Nutritional Value of Edible Mushroom, In: S. T. Chang and W. A. Hayer, Eds., Biology and Cultivation of Edible Mushrooms, Academic Press, New York, 137-168 (1978)
2. I. Doymaz. (2014). Drying kinetics and rehydration characteristics of convective hot-air dried white button mushroom slices. Journal of Chemistry, 2014.
3. M. Brenan, G. Le port, A. Pulvirenti, and R. Gormley, (2000) https://doi.org/ 10.1006/fstl.2000.0657
4. A.A. Karim, and C.C. Wai, Characteristics of foam prepared from starfruit (Averrhoa carambola L.) puree by using methyl cellulose. J. Food. Hydrocoll. 13, 203–210 (1999)
5. D.M. Kadam, R.T. Patil, and P. Kaushik, Foam Mat Drying of Fruit and Vegetable Products. In Drying of Foods, Vegetables and Fruits, (Jangam, S.V., Law, C.L. & Mujumdar, A.S. eds), 113–124, Central Institute of Post Harvest Eng. Technol. Ludhiana, India. (2010)
6. M. Azizpour, M. Mohebbi, M. H. Haddad Khodaparast, & M. Varidi, Optimization of foaming parameters and investigating the effects of drying temperature on the foam-mat drying of shrimp (Penaeus indicus). J. Dry. Technol. 32, 374–384. (2014).
7. E. Abbasi, M. Azizpour, Evaluation of physicochemical prop‌erties of foam mat dried sour cherry powder. LWT Food Sci. Technol. 68, 105–10 (2016)
8. D. M. Kadam, S. Balasubramanian, S. (2011). Foam mat drying of tomato juice. Journal of food processing and preservation, 35, 488-495.
9. M. A. Hossain, S. Mitra, M. Belal, W. Zzaman, (2021). Effect of foaming agent concentration and drying temperature on biochemical properties of foam mat dried tomato powder. Food Research, 5, 291-297.
10. O. S. Qadri, A. K. Srivastava, (2014). Effect of microwave power on foam-mat drying of tomato pulp. Agricultural Engineering International: CIGR Journal, 16, 238-244.
11. P. Rajkumar, R. Kailappan, R. Viswanathan, G. S. V. Raghavan, C. Ratti, C. (2007). Foam mat drying of alphonso mango pulp. Drying Technology, 25, 357-365.
12. A. M. Chaux-Gutiérrez, A. B. Santos, D. M. Granda-Restrepo, M. A. Mauro, (2017). Foam mat drying of mango: Effect of processing parameters on the drying kinetic and product quality. Drying Technology, 35, 631-641.
13. M. L. Ng, R. Sulaiman, R. (2018). Development of beetroot (Beta vulgaris) powder using foam mat drying. Lwt, 88, 80-86.
14. P. Kandasamy, N. Varadharaju, S. Kalemullah, D. Maladhi, (2014). Optimization of process parameters for foam-mat drying of papaya pulp. Journal of food science and technology, 51, 2526-2534.
15. A. El-Salam, E. Abd El-Salam, A. M. Ali, K. S. Hammad, (2021). Foaming process optimization, drying kinetics and quality of foam mat dried papaya pulp. Journal of Food Science and Technology, 58, 1449-1461.
16. C. Ratti, and T. Kurda, Drying of foamed biological materials: opportunities and challenges. J. Dry. Technol. 24, 1101–1108 (2006)
17. M.O. Aremu, S.K. Basu, S.D. Gyar, A. Goyal, P.K. Bhowmik, S. Datta Banik, Proximate composition and functional properties of mushroom flours from Ganoderma spp., Omphalotus olearius (DC.) Sing. & Hebeloma mesophaeum (Pers.) Quél, Used in Nasarawa State, Nigeria. Malaysian J. Nutr. 15, 233 –241 (2009)
18. J.N. Bemiller, R.L. Whistler, Carbohydrates, in Food Chemistry, 3rd ed. O.R. Fennema, Marcel Dekker. New York. 157-233 (1996)
19. M. R. Salahi, M. Mohebbi, M. Taghizadeh, (2015). Foam‐Mat Drying of Cantaloupe (C ucumis melo): Optimization of Foaming Parameters and Investigating Drying Characteristics. Journal of food processing and preservation, 39, 1798-1808.
20. A. Muthukumaran, Foam-mat freeze drying of egg white and mathematical modeling. MSc Thesis, In Department of Bio resource Engineering, McGill University (2007).
21. J. Lee, L. Ye, W. Landen, R.R. Eitenmiller, Optimization of extraction procedure for the quantification of vitamin E in tomato and broccoli using response surface methodology. J. Compo. Analysis, 13. 45–57 (2000)
22. S.K. Bag, P.P. Srivastav, H.N. Mishra, Optimization of Process Parameters for Foaming of Bael (Aeglemarmelos L.) Fruit Pulp. Food. Bioproc. Technol. 4, 1450-1458(2011)
23. E.A. Sauter, and J.E. Montoure, The relationship of lysosyme content of egg white to volume and stability of foams. J. Food Sci. 37, 918–920 (1972)
24. N.J. Thakor, S. Sokhansanj, F.W. Sosulski, S. Yannacopoulos, Mass and dimensional changes of single canola kernels during drying. J. Food. Eng. 40, 153–160 (1999)
25. Z. Wang, J. Sun, X. Liao, F. Chen, G. Zhao, J. Wu, X. Hu, Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int. 40, pp 39–46 (2007)
26. S.C. Chapra, R.P. Canale, Numerical methods for engineers. New York: McGraw-Hill Book Company, 337(1989)
27. A.A. McConnell, M.A. Eastwood, and, W.D. Mitchell,Physical characteristics of vegetable food stuffs”, J. Sci. Food. Agric. 25,1457-64 (1974)
28. J.J. Bikerman, Foams. Springer Verlag, New York (1973)
29. S.I. Laneuville, P. Paquin, & S.L. Turgeon, Effect of preparation conditions on the characteristics of whey protein-xanthan gum complexes. J. Food. Hydr. 14, 305–314 (2000)
30. K.O. Falade, K.I. Adeyanju, P.I. Uzo-Peters, Foam-mat drying of cowpea (Vignaunguiculata) using glycerylmonostearate and egg albumin as foaming agents. Euro. Food Res. Technol. 217, 486–491(2003)
31. S. Damodaran, Amino Acids, Peptides, and Proteins. In Food Chemistry, (Fennema, O.R. ed). 3rd ed. New York, 322–416 (1996)
32. W. Drenckhan, S. Langevin, Monodisperse foams in one to three dimensions. Current Opinion in Colloid and Interface Science, 15, 341-358 (2010)
33. J.P. Heller, M.S. Kuntanukkula, Critical review of the foam rheology literature. Indust. Eng. Chem. Res. 26, 318–325(1987)
34. E.M. Papalamprou, E.A. Makri, V.D. Kiosseoglou, G.I. Doxastakis, Effect of medium molecular weight xanthan gum in rheology and stability of oil in water emulsion stabilized with legume proteins. J. Science. Food. Agric. 85. 1967–1973 (2005)
35. J.B. German, L. Phillips, Protein Interactions in Foams: Protein-Gas Phase Interactions in Protein Functionality in Food Systems, N. S. H. G. R. Ziegler, Marcel Dekker Inc, 181–208 (1994).
36. P.J. Wilde, D.C. Clark, Foam formation and stability. Methods of testing protein functionality. GM Hall, Blackie Academic and Professional, 111–152 (1996)
37. R. Thuwapanichayanan, S. Prachayawarakorn, S. Soponronnarit, Drying characteristics and quality of banana foam mat. J. Food. Eng. 86, 573–583 (2008)
38. S. Thankitsunthorn, C. Thawornphiphatdit, N. Laohaprasit, G. Srzednicki, Effects of drying temperature on quality of dried Indian Gooseberry powder. Int. Food. Res. J. 16, 355-361(2009)
39. O.R. Fennema, Food chemistry, 3rd ed. Marcel Dekker Inc, New York. Goodwin, T.W. (1984). The biochemistry of the carotenoids (2nd ed.). London: Chapman and Hall (1996)
40. T.S. Franco, C.A. Perussello, L.N. Ellendersen, M.L. Masson, Effects of foam mat drying on physicochemical and microstructural properties of yacon juice powder. LWT Food Sci. Technol. 66, 503–513 (2016)
41. I. Mandala, E. Anagnostaras, C. Oikonomou, Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. J. Food. Eng. 69(3), 307-316 (2005)
42. H. Qing-guo, Z. Min, A.S. Mujumdar, D. Wei-hua, S. Jin-cai, Effects of different drying methods on the quality changes of granular edamame. J. Dry. Technol. 24(8),1025-1032(2006)
43. G.V. Barbosa-Canovas, E. Ortega-Rivas, P. Juliano, H. Yan, Food powders: Physical properties, processing and functionality (1st ed.). New York: Kluwer Academic/ Plenum Publishers (2005)