درون پوشانی کروسین در حامل های نیوزومی و لیپوزومی و بررسی ویژگی های آنها

نویسنده
گروه علوم و صنایع غذایی، واحد زرین دشت، دانشگاه آزاد اسلامی، زرین دشت، ایران
چکیده
هدف از این پژوهش درون پوشانی کروسین در سیستم های لیپوزوم و نیوزوم و بررسی ویژگی های آنها از جمله اندازه ذرات، پایداری، راندمان درون پوشانی، ویسکوزیته، خاصیت آنتی اکسیدانی، رهایش در سیستم گوارش، مقاومت به شرایط اسیدی و مقاومت به دماهای بالای آن بود. نتایج نشان داد که نمونه های درون پوشانی شده در نیوزوم (45/76 نانومتر) اندازه ذرات کوچکتر و پراکندگی بهتری نسبت به لیپوزوم (35/103 نانومتر) داشتند. همچنین راندمان درون پوشانی نیوزوم (08/88 %) بالاتر از لیپوزوم (59/80 %) بود. تفاوت معنی داری بین خاصیت آنتی اکسیدانی نمونه های لیپوزوم و نیوزوم مشاهده نشد. اما میزان رهایش در دستگاه گوارش برای نمونه های نیوزومی بالاتر بود. بررسی نتایح میزان مقاومت به شرایط اسیدی و دمای بالا نشان داد نمونه های درون پوشانی شده در نیوزوم مقاومت بهتری از خود نشان دادند. به طور کلی می توان نتیجه گرفت که سیستم نیوزوم سیستم مناسب تری برای درون پوشانی کروسین و استفاده از آن در افزایش کارایی سیتم های غذایی، دارویی و آرایشی و بهداشتی است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Crocin encapsulation in niosome and liposome carriers and investigation of their properties

نویسنده English

hannan lashkari
Department of Food Science and Technology, Zarin Dasht Branch, Islamic Azad University,6 Zarin Dasht, Iran.
چکیده English

The aim of this study was to investigate crocin encapsulation in liposome and niosome systems and their characteristics such as particle size, stability, encapsulation efficiency, viscosity, antioxidant properties, gastrointestinal release, resistance to acidic conditions and resistance to high temperatures. The results showed that the samples encapsulated in the noisome (76.45 nm) had smaller particle size and better dispersion than the liposome (103.35 nm). Also, the encapsulation efficiency of the noisome (88.08 %) was higher than that of the liposome (80.59 %). No significant difference was observed between the antioxidant properties of liposome and niosome samples. But gastrointestinal release was higher for niosomic samples. Examination of the results of resistance to acidic conditions and high temperature showed that the samples covered in the niosome showed better resistance. In general, it can be concluded that niosome system is a more suitable system for crocin encapsulation and its use in increasing the efficiency of food, pharmaceutical and cosmetic systems.

کلیدواژه‌ها English

Bioactive
Crocin
Encapsulation
Liposome
Niosome
[1] Assadpour, E., & Jafari, S. M. (2019). Nanoencapsulation: Techniques and developments for food applications. In Nanomaterials for food applications (pp. 35-61). Elsevier.
[2] Lashkari, H., Varidi, M. J., Eskandari, M. H., & Varidi, M. (2018). The effect of adding pomegranate juice on physicochemical, microbial and sensory properties of whey less Feta cheese. JFST No. 83, Vol. 15, 299-314.
[3] Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., & Nejati-Koshki, K. (2013). Liposome: classification, preparation, and applications. Nanoscale research letters, 8(1), 1-9.
[4] Moghassemi S, Hadjizadeh A. (2014). Nano-Niosomes as Nanoscale Drug Delivery Systems: An Illustrated Review. Journal of Controlled Release, 185: 22-36.
[5] Veisi, A., Akbari, G., Mard, S. A., Badfar, G., Zarezade, V., & Mirshekar, M. A. (2020). Role of crocin in several cancer cell lines: An updated review. Iranian journal of basic medical sciences, 23(1), 3.
[6] Hashemzaei, M., Mamoulakis, C., Tsarouhas, K., Georgiadis, G., Lazopoulos, G., Tsatsakis, A., . . . Rezaee, R. (2020). Crocin: a fighter against inflammation and pain. Food and Chemical Toxicology, 143, 111521.
[7] Rezvani, M., Hesari, J., Peighambardoust, S. H., Manconi, M., Hamishehkar, H., & Escribano-Ferrer, E. (2019). Potential application of nanovesicles (niosomes and liposomes) for fortification of functional beverages with Isoleucine-Proline-Proline: A comparative study with central composite design approach. Food Chemistry, 293, 368-377.
[8] Hasibi, F., Nasirpour, A., Varshosaz, J., García‐Manrique, P., Blanco‐López, M. C., Gutiérrez, G., & Matos, M. (2020). Formulation and characterization of Taxifolin‐loaded lipid nanovesicles (Liposomes, Niosomes, and Transfersomes) for beverage fortification. European Journal of Lipid Science and Technology, 122(2), 1900105.
[9] Naderi, R., Pardakhty, A., Abbasi, M. F., Ranjbar, M., & Iranpour, M. (2021). Preparation and evaluation of crocin loaded in nanoniosomes and their effects on ischemia–reperfusion injuries in rat kidney. Scientific Reports, 11(1), 1-12.
[10] Nazari, M., Ghanbarzadeh, B., Kafil, H. S., Zeinali, M., & Hamishehkar, H. (2019). Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model. Colloid and interface science communications, 30, 100176.
[11] Rabbani, M., Pezeshki, A., Ahmadi, R., Mohammadi, M., Tabibiazar, M., Azar, F. A. N., & Ghorbani, M. (2021). Phytosomal nanocarriers for encapsulation and delivery of resveratrol-Preparation, characterization, and application in mayonnaise. LWT, 151, 112093.
[12] Nagaraju, P. G., Sengupta, P., Chicgovinda, P. P., & Rao, P. J. (2021). Nanoencapsulation of clove oil and study of physicochemical properties, cytotoxic, hemolytic, and antioxidant activities. Journal of Food Process Engineering, 44(4), e13645.
[13] Lashkari, H., Varidi, M. J., & Eskandari, M. H. (2020) Effect of Pomegranate Juice on the Manufacturing Process and Characterization of Feta-Type Cheese during Storage. Journal of Food Quality, Hindawi, ID: 8816762.
[14] Hosseini, S. M. H., Gahruie, H. H., Razmjooie, M., Sepeidnameh, M., Rastehmanfard, M., Tatar, M., & Van der Meeren, P. (2019). Effects of novel and conventional thermal treatments on the physicochemical properties of iron-loaded double emulsions. Food Chemistry, 270, 70-77.
[15] Junyaprasert, V. B., Singhsa, P., Suksiriworapong, J., & Chantasart, D. J. I. j. o. p. (2012). Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. 423(2), 303-311.
[16] Pando, D., Gutiérrez, G., Coca, J., & Pazos, C. J. J. o. F. E. (2013). Preparation and characterization of niosomes containing resveratrol. 117(2), 227-234.
[17] Pando, D., Matos, M., Gutiérrez, G., Pazos, C. J. C., & Biointerfaces, S. B. (2015). Formulation of resveratrol entrapped niosomes for topical use. 128, 398-404.
[18] Mishra, J., Swain, J., & Mishra, A. K. (2018). Molecular Level Understanding of Sodium Dodecyl Sulfate (SDS) Induced Sol–Gel Transition of Pluronic F127 Using Fisetin as a Fluorescent Molecular Probe. The Journal of Physical Chemistry, 122, 1, 181–193.
[19] Shakeri, S., Ashrafizadeh, M., Zarrabi, A., Roghanian, R., Afshar, E. G., Pardakhty, A., & Thakur, V. K. J. B. (2020). Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics. 8(1), 13.
[20] Rezvani, M., Hesari, J., Peighambardoust, S. H., Manconi, M., Hamishehkar, H., & Escribano-Ferrer, E. (2019). Potential application of nanovesicles (niosomes and liposomes) for fortification of functional beverages with Isoleucine-Proline-Proline: A comparative study with central composite design approach. Food chemistry, 293, 368-377.
[21] Nadzir, M. M., Fen, T. W., Mohamed, A. R., & Hisham, S. F. J. S. M. (2017). Size and stability of curcumin niosomes from combinations of Tween 80 and Span 80. 46(12), 2455-2460.
[22] Pardakhty, A., Shakibaie, M., Daneshvar, H., Khamesipour, A., Mohammadi-Khorsand, T., & Forootanfar, H. J. J. o. m. (2012). Preparation and evaluation of niosomes containing autoclaved Leishmania major: a preliminary study. 29(3), 219-224.
[23] Li, B., Hou, S., Duan, Z., Li, L., Guo, W. J. C., & Materials, B. (2021). Rheological behavior and compressive strength of concrete made with recycled fine aggregate of different size range. 268, 121172.
[24] Marianecci, C., Di Marzio, L., Rinaldi, F., Celia, C., Paolino, D., Alhaique, F. & science, i. (2014). Niosomes from 80s to present: the state of the art. 205, 187-206.
[25] Hasirci, N. (2007) Micro and nano systems in biomedicine and drug delivery. In Nanomaterials and nanosystems for biomedical applications. Springer, pp. 1-26.
[26] Hao, Y.-M. (2011) Entrapment and release difference resulting from hydrogen bonding interactions in niosome. Int. J. Pharmaceutic. 403, 245-253.
[27] Noronha, C.M., Granada, A.F., De Carvalho, S.M., Lino, R.C., De Ob Maciel, M.V., & Barreto, P.L.M. (2013). Optimization of α-tocopherol loaded nanocapsules by the nanoprecipitation method. Ind. Crops Prod. 50, 896-903.
[28] Abdelbary, G., And El-Gendy, N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. Aaps Pharmscitech 9, 740-747 (2008).
[29] Mokhtar, M., Sammour, O.A., Hammad, M.A., & Megrab, N.A. (2008). Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int. J. Pharmaceutic. 361, 104-111.
[30] Manosroi, A., Wongtrakul, P., Manosroi, J., Sakai, H., Sugawara, F., Yuasa, M., & Abe, M. (2003). Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf. B 30, 129-138.
[31] Li, D., Wu, G., Zhang, H., & Qi, X. (2021). Preparation of crocin nanocomplex in order to increase its physical stability. Food Hydrocolloids, 120, 106415.
[32] Rahaiee, S., Hashemi, M., Shojaosadati, S. A., Moini, S., & Razavi, S. H. (2017). Nanoparticles based on crocin loaded chitosan-alginate biopolymers: Antioxidant activities, bioavailability and anticancer properties. International journal of biological macromolecules, 99, 401-408.