[1] Wu, Q., Ye, Y., Li, F., Zhang, J., & Guo, W. 2016. Prevalence and genetic characterization of Pseudomonas aeruginosa in drinking water in Guangdong Province of China. LWT-Food Science and Technology, 69, 24-31.
[2] Benie, C., Nathalie, G., Adjéhi, D. 2017. Prevalence and antibiotic resistance of Pseudomonas aeruginosa isolated from bovine meat, fresh fish and smoked fish. Arch Clin Microbiol, 8 (3):1-9.
[3] Sharafati Chaleshtori, R., Mazroii Arani, N., Alizadeh, E., & Etemadi, A. 2020. Prevalence and antimicrobial resistance pattern of Pseudomonas aeruginosa strains isolated from rose water and herbal distillates in Kashan, 2018. Journal of Food Microbiology, 7(2), 10-17.
[4] Danaei, G., Ding, E. L., Mozaffarian, D., Taylor, B., Rehm, J., Murray, C. J., & Ezzati, M. 2009. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS medicine, 6(4); 1-23.
[5] Shin, S. Y., Bajpai, V. K., Kim, H. R., & Kang, S. C. 2007. Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. LWT-Food Science and Technology, 40(9), 1515-1519.
[6] Desbois, A. P., & Lawlor, K. C. 2013. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Marine drugs, 11(11), 4544-4557.
[7] Chanda, W., Joseph, T. P., Guo, X. F., Wang, W. D., Liu, M., Vuai, M. S, Zhong, M. T. 2018. Effectiveness of omega-3 polyunsaturated fatty acids against microbial pathogens. Journal of Zhejiang University. Science. B, 19(4), 253.
[8] Cui H.Y, Zhou H, Lin L. 2016. The specific antibacterial effect of the salvia oil nanoliposomes against Staphylococcus aureus biofilms on milk container. Food Control. 61:92–98.
[9] Lenihan-Geels, G., & Bishop, K. S. 2016. Alternative origins for omega-3 fatty acids in the diet. In Omega-3 Fatty Acids (pp. 475-486). Springer, Cham.
[10] Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. 2006. Nanoemulsions: formation, structure, and physical properties. Journal of Physics: condensed matter, 18(41), R635.
[11] Salvia-Trujillo, L.; Soliva-Fortuny, R.C.; Rojas-Graü, M.A.; Martín-Belloso, O.; McClements, D.J. 2017. Edible nanoemulsions as carriers of active ingredients: A review. Annu. Rev. Food Sci. Technol, 8, 439–466.
[12] Schreiner, M., & Windisch, W. 2006. Supplementation of cow diet with rapeseed and carrots: influence on fatty acid composition and carotene content of the butter fat. Journal of Food Lipids, 13(4), 434–444.
[13] Henna Lu, F. S., & Norziah, M. H. 2011. Contribution of microencapsulated n‐3 PUFA powder toward sensory and oxidative stability of bread. Journal of Food Processing and Preservation, 35(5), 596-604.
[14] Walker RM, Decker EA, McClements DJ. 2015. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food & Function. 6(1):41-54.
[15] Iafelice, G., Caboni, M. F., Cubadda, R., Criscio, T. D., Trivisonno, M. C., & Marconi, E. 2008. Development of functional spaghetti enriched with long chain omega-3 fatty acids. Cereal chemistry, 85(2), 146-151.
[16] Liu, Z., Jiao, Y., Wang, Y., Zhou, C., & Zhang, Z. 2008. Polysaccharides-based nanoparticles as drug delivery systems. Advanced drug delivery reviews, 60(15), 1650-1662.
[17] Moghimi,R.Aliahmadi, A. Rafati, H. Abtahi, HR. Amini, SH.Feizabadi, MM. 2018. Antibacterial and anti-biofilm activity of nanoemulsion of Thymus daenensis oil against multi-drug resistant Acinetobacter baumannii. Journal of Molecular Liquids 265 765–770
[18] Yang, Y., Marshall-Breton, C., Leser, M. E., Sher, A. A., & McClements, D. J. 2012. Fabrication of ultrafine edible emulsions: Comparison of high-energy and low-energy homogenization methods. Food hydrocolloids, 29(2), 398-406.
[19] Chee, C. P., Gallaher, J. J., Djordjevic, D., Faraji, H., McClements, D. J., Decker, E. A., Coupland, J. N. 2005. Chemical and sensory analysis of strawberry flavoured yogurt supplemented with an algae oil emulsion. Journal of dairy research, 72(3), 311-316.
[20] Saberi, A. H., Fang, Y., & McClements, D. J. 2013. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. Journal of colloid and interface science, 391, 95-102.
[21] Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Zorzet, A. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318-327.
[22] Hosseinnia. M, Alizadeh Khaledabad. M, Almasi. H. 2017. Optimization of Ziziphora clinopodiodes essential oil microencapsulation by whey protein isolate and pectin: A comparative study. International Journal of Biological Macromolecules. 101, 958-966.
[23] Kuhn, K. R. and Cunha, R. L. 2012. Flaxseed oil – Whey protein isolate emulsions: Effect of high pressure homogenization. Journal of Food Engineering, 111(2), 449– 457.
[24] Rosso, D. Huo, D L. Stenstrom, M K. 2006. Effects of interfacial surfactant contamination on bubble gas transfer. Journal Chemical Engineering Science, 61(16), 5500-5514
[25] Komaiko, J., & McClements, D. J. 2015. Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of Food Engineering, 146, 122-128.
[26] Iranian National Standardization Organization. ISIRI. 2010. Milk and milk products – Determination of titrable acidity and value pH-Test method. Inst Stand Indus Res Iran 1 th Edition. 2852
[27] Lee, S. J., & McClements, D. J. 2010. Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocolloids, 24(6-7), 560-569.
[28] Li, M., Ma, Y., & Cui, J. 2014. Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. LWT-Food science and technology, 59(1), 49-58.
[29] da Silva Marques, T. Z., Santos-Oliveira, R., de Siqueira, L. B. D. O., da Silva Cardoso, V., de Freitas, Z. M. F., & da Silva Ascenção, R. D. C. 2018. Development and characterization of a nanoemulsion containing propranolol for topical delivery. International journal of nanomedicine, 13, 2827.
[30] Tian, Y., Guo, Y., & Zhang, W. 2016. Effect of Oil Type, Aliphatic Alcohol, and Ionic Surfactants on the Formation and Stability of Ceramide-2 Enriched Nanoemulsions. Journal of Dispersion Science and Technology, 37(8), 1115-1122.
[31] Henna Lu, F. S., & Norziah, M. H. 2011. Contribution of microencapsulated n‐3 PUFA powder toward sensory and oxidative stability of bread. Journal of Food Processing and Preservation, 35(5), 596-604.
[32] Birdi, K. A. S. 2008. Handbook of surface and colloid chemistry. CRC press. p 415-438.
[33] Wooster, T. J., Golding, M., & Sanguansri, P. 2008. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir, 24(22), 12758-12765.
[34] Nejadmansouri, M., Hosseini, S. M. H., Niakosari, M., Yousefi, G. H. & Golmakani, M. T. 2016. Physicochemical properties and oxidative stability of fish oil nanoemulsions as affected by hydrophilic lipophilic balance, surfactant to oil ratio and storage temperature. Colloids & Surfaces A Physicochemical & Engineering Aspects, 506, 821-832.
[35] Liang, R., Shoemaker, C. F., Yang, X., Zhong, F., & Huang, Q. 2013. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. Journal of agricultural and food chemistry, 61(6), 1249-1257. McClements D, Rao J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit Rev Food Sci Nutr 2011; 51: 285-330
[36] Ariyaprakai, S., & Dungan, S. R. 2007. Solubilization in monodisperse emulsions. Journal of colloid and interface science, 314(2), 673-682.
[37] Doulgeraki, A. I., Di Ciccio, P., Ianieri, A., & Nychas, G. J. E. 2017. Methicillin-resistant food-related Staphylococcus aureus: a review of current knowledge and biofilm formation for future studies and applications. Research in microbiology, 168(1), 1-15.
[38] Liang, Y., Gillies, G., Patel, H., Matia-Merino, L., Ye, A., & Golding, M. 2014. Physical stability, microstructure and rheology of sodium-caseinate-stabilized emulsions as influenced by protein concentration and non-adsorbing polysaccharides. Food hydrocolloids, 36, 245-255.
[39] Cheng, C. L., Huang, S. J., Wu, C. L., Gong, H. Y., Ken, C. F., Hu, S. Y., & Wu, J. L. 2015. Transgenic expression of omega-3 PUFA synthesis genes improves zebrafish survival during Vibrio vulnificus infection. Journal of biomedical science, 22(1), 1-13.
[40] Rao, J., & McClements, D. J. 2012. Food-grade microemulsions and nanoemulsions: Role of oil phase composition on formation and stability. Food hydrocolloids, 29(2), 326-334.
[41] Faraji, N., Alizadeh, M., & Almasi, H. 2020. Evaluation of Physicochemical and sensory Properties of low fat probiotic Yogurt Enriched by Iraninan Shallot Nanoemulsion containing omega3 fatty acid. Food Science and Technology, 17(100), 77-101.
[42] Li, M., Ma, Y., & Cui, J. 2014. Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. LWT-Food science and technology, 59(1), 49-58.
[43] Inguglia, L., Chiaramonte, M., Di Stefano, V., Schillaci, D., Cammilleri, G., Pantano, L., Arizza, V. 2020. Salmo salar fish waste oil: Fatty acids composition and antibacterial activity. PeerJ, 8, e9299.
[44] Walker, R. M. 2016. Fish oil nanoemulsions: optimization of physical and chemical stability for food system applications. Masters Theses. 313
[45] Mil-Homens, D., Bernardes, N., & Fialho, A. M. 2012. The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia. FEMS microbiology letters, 328(1), 61-69.