بررسی پایداری فیزیکی و شیمیایی نانوامولسیون امگا3 و اثر ضدباکتریایی آن بر دو باکتری استافیلوکوکوس اورئوس و سودوموناس آئروجینوزا

نویسندگان
1 دانشجوی Ph.D، گروه بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران
2 گروه بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران
3 گروه فارماسیوتیکس، دانشکده داروسازی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران
چکیده
علی­رغم اینکه روغن ماهی از منابع بسیار مهم امگا3 می­باشد و مصرف آن از جنبه تغذیه توصیه شده است، اما به­دلیل عدم پایداری آن، امکان استفاده مستقیم در سیستم غذایی وجود ندارد. لذا با تبدیل ذرات آن به ابعاد نانو می­توان بر پایداری آن افزود. هدف از انجام این مطالعه بررسی پایداری فیزیکی و شیمیایی نانوامولسیون امگا3 در دماهای متفاوت و خواص ضدباکتریایی آن می­باشد. بدین منظور روغن ماهی حاوی اسیدهای چرب امگا3 به روش انرژی بالا در ابعاد نانو تولید گردید و خصوصیات فیزیکی (ابعاد ذرات، پتانسیل زتا، ویسکوزیته، و پایداری فیزیکی) و شیمیایی (pH و کدورت) آن طی نگه­داری در 3 دمای 4، 25 و 40 درجه سانتی­گراد در طی گذشت 7 روز، همین­طور خواص ضدباکتریایی نانوامولسیون روغن ماهی بر دو باکتری شاخص گرم + و مورد بررسی قرار گرفت. نتایج نشان داد که نانوامولسیون امگا3 تولید شده بهنرین پایداری را در دمای 25 درجه سانتی­گراد داشته است. همین­طور غلظت بهینه 4 درصد از نانوامولسیون امگا3 خاصیت ضدباکتریایی بر دوباکتری مورد بررسی، به ویژه باکتری استافیلوکوکوس اورئوس نشان داد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of physical and chemical stability of Omega-3 nanoemulsion and its antibacterial effect on Staphylococcus aureus and Psedumonas aeruginosa

نویسندگان English

Zahra Ghafuri 1
ALI FAZLARA 2
Mahdi Pourmahdi broojeni 2
neda bavarsad 3
1 Ph.D. Student of Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
چکیده English

Although fish oil is a very important source of omega-3 and its consumption is recommended in terms of nutrition, it cannot be used directly in the food system due to its instability. Therefore, its stability can be increased by converting the particle to the nanoscale. The aim of this study was to investigate the physical and chemical stability of omega-3 nanoemulsion at different temperatures and its antibacterial properties. For this purpose, fish oil containing omega-3 fatty acids was produced by high energy method in nanoparticles and its physical (particle size, zeta potential, viscosity, and physical stability) and chemical properties (pH and turbidity) were evaluated during storage at 4, 25 and 40 o C during 7 days, as well as antibacterial properties of fish oil nanoemulsion against two gram-positive and gram-negative bacteria. The results showed that the omega-3 nanoemulsion produced had the optimum stability at 25 o C. the optimal concentration of 4% of omega-3 nanoemulsions also showed antibacterial properties against the studied bacteria, especially Staphylococcus aureus.

کلیدواژه‌ها English

Omega-3
Nanoemulsion
Chemical
Physical
Staphylococcus auerus
[1] Wu, Q., Ye, Y., Li, F., Zhang, J., & Guo, W. 2016. Prevalence and genetic characterization of Pseudomonas aeruginosa in drinking water in Guangdong Province of China. LWT-Food Science and Technology, 69, 24-31.
[2] Benie, C., Nathalie, G., Adjéhi, D. 2017. Prevalence and antibiotic resistance of Pseudomonas aeruginosa isolated from bovine meat, fresh fish and smoked fish. Arch Clin Microbiol, 8 (3):1-9.
[3] Sharafati Chaleshtori, R., Mazroii Arani, N., Alizadeh, E., & Etemadi, A. 2020. Prevalence and antimicrobial resistance pattern of Pseudomonas aeruginosa strains isolated from rose water and herbal distillates in Kashan, 2018. Journal of Food Microbiology, 7(2), 10-17.
[4] Danaei, G., Ding, E. L., Mozaffarian, D., Taylor, B., Rehm, J., Murray, C. J., & Ezzati, M. 2009. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS medicine, 6(4); 1-23.
[5] Shin, S. Y., Bajpai, V. K., Kim, H. R., & Kang, S. C. 2007. Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. LWT-Food Science and Technology, 40(9), 1515-1519.
[6] Desbois, A. P., & Lawlor, K. C. 2013. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Marine drugs, 11(11), 4544-4557.
[7] Chanda, W., Joseph, T. P., Guo, X. F., Wang, W. D., Liu, M., Vuai, M. S, Zhong, M. T. 2018. Effectiveness of omega-3 polyunsaturated fatty acids against microbial pathogens. Journal of Zhejiang University. Science. B, 19(4), 253.
[8] Cui H.Y, Zhou H, Lin L. 2016. The specific antibacterial effect of the salvia oil nanoliposomes against Staphylococcus aureus biofilms on milk container. Food Control. 61:92–98.
[9] Lenihan-Geels, G., & Bishop, K. S. 2016. Alternative origins for omega-3 fatty acids in the diet. In Omega-3 Fatty Acids (pp. 475-486). Springer, Cham.
[10] Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. 2006. Nanoemulsions: formation, structure, and physical properties. Journal of Physics: condensed matter, 18(41), R635.
[11] Salvia-Trujillo, L.; Soliva-Fortuny, R.C.; Rojas-Graü, M.A.; Martín-Belloso, O.; McClements, D.J. 2017. Edible nanoemulsions as carriers of active ingredients: A review. Annu. Rev. Food Sci. Technol, 8, 439–466.
[12] Schreiner, M., & Windisch, W. 2006. Supplementation of cow diet with rapeseed and carrots: influence on fatty acid composition and carotene content of the butter fat. Journal of Food Lipids, 13(4), 434–444.
[13] Henna Lu, F. S., & Norziah, M. H. 2011. Contribution of microencapsulated n‐3 PUFA powder toward sensory and oxidative stability of bread. Journal of Food Processing and Preservation, 35(5), 596-604.
[14] Walker RM, Decker EA, McClements DJ. 2015. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food & Function. 6(1):41-54.
[15] Iafelice, G., Caboni, M. F., Cubadda, R., Criscio, T. D., Trivisonno, M. C., & Marconi, E. 2008. Development of functional spaghetti enriched with long chain omega-3 fatty acids. Cereal chemistry, 85(2), 146-151.
[16] Liu, Z., Jiao, Y., Wang, Y., Zhou, C., & Zhang, Z. 2008. Polysaccharides-based nanoparticles as drug delivery systems. Advanced drug delivery reviews, 60(15), 1650-1662.
[17] Moghimi,R.Aliahmadi, A. Rafati, H. Abtahi, HR. Amini, SH.Feizabadi, MM. 2018. Antibacterial and anti-biofilm activity of nanoemulsion of Thymus daenensis oil against multi-drug resistant Acinetobacter baumannii. Journal of Molecular Liquids 265 765–770
[18] Yang, Y., Marshall-Breton, C., Leser, M. E., Sher, A. A., & McClements, D. J. 2012. Fabrication of ultrafine edible emulsions: Comparison of high-energy and low-energy homogenization methods. Food hydrocolloids, 29(2), 398-406.
[19] Chee, C. P., Gallaher, J. J., Djordjevic, D., Faraji, H., McClements, D. J., Decker, E. A., Coupland, J. N. 2005. Chemical and sensory analysis of strawberry flavoured yogurt supplemented with an algae oil emulsion. Journal of dairy research, 72(3), 311-316.
[20] Saberi, A. H., Fang, Y., & McClements, D. J. 2013. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. Journal of colloid and interface science, 391, 95-102.
[21] Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Zorzet, A. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318-327.
[22] Hosseinnia. M, Alizadeh Khaledabad. M, Almasi. H. 2017. Optimization of Ziziphora clinopodiodes essential oil microencapsulation by whey protein isolate and pectin: A comparative study. International Journal of Biological Macromolecules. 101, 958-966.
[23] Kuhn, K. R. and Cunha, R. L. 2012. Flaxseed oil – Whey protein isolate emulsions: Effect of high pressure homogenization. Journal of Food Engineering, 111(2), 449– 457.
[24] Rosso, D. Huo, D L. Stenstrom, M K. 2006. Effects of interfacial surfactant contamination on bubble gas transfer. Journal Chemical Engineering Science, 61(16), 5500-5514
[25] Komaiko, J., & McClements, D. J. 2015. Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of Food Engineering, 146, 122-128.
[26] Iranian National Standardization Organization. ISIRI. 2010. Milk and milk products – Determination of titrable acidity and value pH-Test method. Inst Stand Indus Res Iran 1 th Edition. 2852
[27] Lee, S. J., & McClements, D. J. 2010. Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocolloids, 24(6-7), 560-569.
[28] Li, M., Ma, Y., & Cui, J. 2014. Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. LWT-Food science and technology, 59(1), 49-58.
[29] da Silva Marques, T. Z., Santos-Oliveira, R., de Siqueira, L. B. D. O., da Silva Cardoso, V., de Freitas, Z. M. F., & da Silva Ascenção, R. D. C. 2018. Development and characterization of a nanoemulsion containing propranolol for topical delivery. International journal of nanomedicine, 13, 2827.
[30] Tian, Y., Guo, Y., & Zhang, W. 2016. Effect of Oil Type, Aliphatic Alcohol, and Ionic Surfactants on the Formation and Stability of Ceramide-2 Enriched Nanoemulsions. Journal of Dispersion Science and Technology, 37(8), 1115-1122.
[31] Henna Lu, F. S., & Norziah, M. H. 2011. Contribution of microencapsulated n‐3 PUFA powder toward sensory and oxidative stability of bread. Journal of Food Processing and Preservation, 35(5), 596-604.
[32] Birdi, K. A. S. 2008. Handbook of surface and colloid chemistry. CRC press. p 415-438.
[33] Wooster, T. J., Golding, M., & Sanguansri, P. 2008. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir, 24(22), 12758-12765.
[34] Nejadmansouri, M., Hosseini, S. M. H., Niakosari, M., Yousefi, G. H. & Golmakani, M. T. 2016. Physicochemical properties and oxidative stability of fish oil nanoemulsions as affected by hydrophilic lipophilic balance, surfactant to oil ratio and storage temperature. Colloids & Surfaces A Physicochemical & Engineering Aspects, 506, 821-832.
[35] Liang, R., Shoemaker, C. F., Yang, X., Zhong, F., & Huang, Q. 2013. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. Journal of agricultural and food chemistry, 61(6), 1249-1257. McClements D, Rao J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit Rev Food Sci Nutr 2011; 51: 285-330
[36] Ariyaprakai, S., & Dungan, S. R. 2007. Solubilization in monodisperse emulsions. Journal of colloid and interface science, 314(2), 673-682.
[37] Doulgeraki, A. I., Di Ciccio, P., Ianieri, A., & Nychas, G. J. E. 2017. Methicillin-resistant food-related Staphylococcus aureus: a review of current knowledge and biofilm formation for future studies and applications. Research in microbiology, 168(1), 1-15.
[38] Liang, Y., Gillies, G., Patel, H., Matia-Merino, L., Ye, A., & Golding, M. 2014. Physical stability, microstructure and rheology of sodium-caseinate-stabilized emulsions as influenced by protein concentration and non-adsorbing polysaccharides. Food hydrocolloids, 36, 245-255.
[39] Cheng, C. L., Huang, S. J., Wu, C. L., Gong, H. Y., Ken, C. F., Hu, S. Y., & Wu, J. L. 2015. Transgenic expression of omega-3 PUFA synthesis genes improves zebrafish survival during Vibrio vulnificus infection. Journal of biomedical science, 22(1), 1-13.
[40] Rao, J., & McClements, D. J. 2012. Food-grade microemulsions and nanoemulsions: Role of oil phase composition on formation and stability. Food hydrocolloids, 29(2), 326-334.
[41] Faraji, N., Alizadeh, M., & Almasi, H. 2020. Evaluation of Physicochemical and sensory Properties of low fat probiotic Yogurt Enriched by Iraninan Shallot Nanoemulsion containing omega3 fatty acid. Food Science and Technology, 17(100), 77-101.
[42] Li, M., Ma, Y., & Cui, J. 2014. Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. LWT-Food science and technology, 59(1), 49-58.
[43] Inguglia, L., Chiaramonte, M., Di Stefano, V., Schillaci, D., Cammilleri, G., Pantano, L., Arizza, V. 2020. Salmo salar fish waste oil: Fatty acids composition and antibacterial activity. PeerJ, 8, e9299.
[44] Walker, R. M. 2016. Fish oil nanoemulsions: optimization of physical and chemical stability for food system applications. Masters Theses. 313
[45] Mil-Homens, D., Bernardes, N., & Fialho, A. M. 2012. The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia. FEMS microbiology letters, 328(1), 61-69.