بررسی مدیریت پسماند گل پساب تولیدی در کارخانجات تولید شکر از نیشکر در مناطق جنوب ایران

نویسندگان
1 مدیر طرح و برنامه صنایع غذایی قند و شکر شرکت پانیذ فام و دانشجوی دکترا رشته مدیریت بازرگانی گرایش بازاریابی دانشگاه آزاد اسلامی واحد سمنان
2 دانشیار گروه مدیریت، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران
چکیده
گل آسیاب یکی از محصولات جانبی است که در حجم قابل توجهی تولید می شود. غالباً گل آسیاب با خاکستر آسیاب حاصل از پخت باگاس مخلوط می شود که با هم قسمت عمده ای از ضایعات آسیاب را در کارخانه های شکر تشکیل می دهد که برای دفع است. سطح کم مواد مغذی و رطوبت بالا باعث می شود گل آسیاب به منبع رقیق مواد مغذی تبدیل شود و تقاضای خرید گل آسیاب بعنوان ماده ای با ارزش از سوی کشاورزان و شرکت بیوتکنولوژی بیشتر است که منجر به انباشت گل آسیاب در اکثر کارخانه ها می شود. استفاده های بارز از گل آسیاب بکارگیری آن در مزارع کشت نیشکر می باشد. به موجب آن، استفاده مداوم از گل و خاکستر آسیاب با نرخ های بالا، بدون شناخت مناسب از شرایط خاک و نیازهای محصول، نگرانی های زیادی را در سال های اخیر ایجاد کرده است. خطر کود دهی بیش از حد و آلودگی فلزات سنگین در مزارع نیشکر و نگرانی های مربوط به اثرات خارج از محل از نشت به آبراه ها، سؤالاتی را در مورد استفاده بی رویه از گل آسیاب در صنعت ایجاد کرده است. در این راستا این مطالعه مسائل مربوط به مدیریت مسئولانه‌ گل آسیاب تولیدی در کارخانجات شکر یا ساکارز از نیشکر (مطالعه موردی کارخانه های نیشکر مناطق جنوب ایران) را بررسی می‌کند و مقرون به صرفه بودن کاربرد آن را در طیف وسیع‌تری از مزارع دورتر از آسیاب‌ها به عنوان وسیله‌ای برای به حداقل رساندن خطرات زیست‌محیطی گزارش می‌کند. به طوریکه، اندازه تخمینی منابع غذایی در گل آسیاب تولید شده توسط شرکت های کشت و صنعت نیشکر فارابی و دهخدا 7300 تن نیتروژن و 4500 تن فسفر در سال است. این نشان دهنده 60 درصد از 7700 تن فسفر تخمین زده شده به عنوان کود در مزارع نیشکر در سال 1400 است
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of wastewater management of effluent produced in sugarcane sugar factories in southern regions of Iran

نویسندگان English

Morteza Norozi 1
Abolfazl Danayi 2
1 Sugar Food Industries Manager of Paniz Fam Company and PhD Student in Business Management, Marketing Orientation, Islamic Azad University, Semnan Branch
2 Associate Professor, Department of Management, Semnan Branch, Islamic Azad University, Semnan, Iran.
چکیده English

Mill flower is one of the by-products that is produced in significant volumes. Mill flour is often mixed with mill ash from bagasse baking, which together forms the bulk of mill waste in sugar factories for disposal. Low levels of nutrients and high humidity make mill flour a dilute source of nutrients, and the demand for mill flour as a valuable material is higher from farmers and biotechnology companies, which leads to the accumulation of mill mud in most factories. The obvious use of mill mud is its use in sugarcane fields. As a result, the continued use of high-rate mill mud and ash, without proper knowledge of soil conditions and crop needs, has caused much concern in recent years. The risk of over-fertilization and heavy metal contamination on sugarcane fields and concerns about the off-site effects of leakage into waterways have raised questions about the excessive use of mill mud in industry. In this regard, this study examines the issues related to the responsible management of mill flowers produced in sugar or sucrose factories from sugarcane (a case study of sugarcane factories in southern Iran) and its cost-effectiveness in a wider range of farms away from mills. Reported as a means to minimize environmental hazards. Thus, the estimated size of food resources in the mill produced by Farabi and Dehkhoda sugarcane companies is 7300 tons of nitrogen and 4500 tons of phosphorus per year. This represents 60% of the 7700 tonnes of phosphorus estimated as fertilizer on sugarcane fields in 1400.

کلیدواژه‌ها English

Waste Management
Milling Efficiency Management
Heavy metals
Sugarcane Nutrients
Choudhary, R., et al., Response of ratoon sugarcane to stubble shaving, off-barring, root pruning and band placement of basal fertilisers with a multi-purpose drill machine. Sugar Tech, 2017. 19(1): p. 33-40.
2. Gholve, S., S. Kumbhar, and D. Bhoite, Recycling of various conventional and non-conventional organic sources in adsali sugarcane (saccharum officinarum l) planted with different planting patterns. Indian Sugar, 2001. 51(1): p. 23-27.
3. Sarwar, M.A., et al., Appraisal of pressmud and inorganic fertilizers on soil properties, yield and sugarcane quality. Pakistan journal of botany, 2010. 42(2): p. 1361-1367.
4. Singh, R.K., et al., Soil–plant–microbe interactions: use of nitrogen-fixing bacteria for plant growth and development in sugarcane, in Plant-microbe interactions in agro-ecological perspectives. 2017, Springer. p. 35-59.
5. Dotaniya, M., et al., Effect of organic sources on phosphorus fractions and available phosphorus in Typic Haplustept. J Indian Soc Soil Sci, 2014. 62(1): p. 80-83.
6. Khakimova, N., et al., Sugar Beet Processing Wastewater Treatment by Microalgae through Biosorption. Water, 2022. 14(6): p. 860.
7. Chauhan, M.K., S. Chaudhary, and S. Kumar, Life cycle assessment of sugar industry: A review. Renewable and Sustainable Energy Reviews, 2011. 15(7): p. 3445-3453.
8. Qureshi, M.E., M.K. Wegener, and T. Mallawaarachchi, The economics of sugar mill waste management in the Australian Sugar Industry: Mill mud case study, 2001.
9. Sharma, S. and H. Simsek, Sugar beet industry process wastewater treatment using electrochemical methods and optimization of parameters using response surface methodology. Chemosphere, 2020. 238: p. 124669.
10. Vaccari, G., et al., Overview of the environmental problems in beet sugar processing: possible solutions. Journal of Cleaner Production, 2005. 13(5): p. 499-507.
11. Ross, M.E., et al., Nitrogen uptake by the macro-algae Cladophora coelothrix and Cladophora parriaudii: Influence on growth, nitrogen preference and biochemical composition. Algal Research, 2018. 30: p. 1-10.
12. Mohsenpour, S.F., et al., Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 2021. 752: p. 142168.
13. AlMomani, F.A. and B. Örmeci, Performance Of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecological Engineering, 2016. 95: p. 280-289.
14. Hongyang, S., et al., Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 2011. 102(21): p. 9884-9890.
15. Travieso, L., et al., Batch mixed culture of Chlorella vulgaris using settled and diluted piggery waste. Ecological Engineering, 2006. 28(2): p. 158-165.
16. Usha, M., et al., Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond. Bioresource technology, 2016. 214: p. 856-860.
17. Posadas, E., et al., Enclosed tubular and open algal–bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater. Ecological engineering, 2014. 67: p. 156-164.
18. Zewdie, D.T. and A.Y. Ali, Cultivation of microalgae for biofuel production: coupling with sugarcane-processing factories. Energy, Sustainability and Society, 2020. 10(1): p. 1-16.
19. Hu, W., Dry weight and cell density of individual algal and cyanobacterial cells for algae research and development. 2014: University of Missouri-Columbia.
20. Chapman, L., Australian sugar industry by-products recycle plant nutrients. Downstream Effects of Land Use. Hunter, HM, AG Eyles, and GE Rayment,(eds.). Queensland Department of National Resources, Queensland, Australia, 1996.
21. Keeffe, E.C., Rapid nutrient determination of sugarcane milling by-products using near infrared spectroscopy, 2013, Queensland University of Technology.
22. Calcino, D., et al., Australian sugarcane nutrition manual. 2018.
23. De Aguiar, C.L., et al., Factors affecting color formation during storage of white crystal sugar. Focusing Mod. Food Ind, 2015. 4: p. 1-10.
24. Chapman, L., M. Haysom, and C. Chardon. Checking the fertility of Queensland's sugar land. in Proceedings of the 1981 Conference of the Australian Society of Sugar Cane Technologists, held at Bundaberg, Queensland from 11th May to 15th May, 1981/edited by OW Sturgess. 1981. Brisbane, Qld.: Watson Ferguson and Co., 1981.
25. Kingston, G. A role for silicon, nitrogen and reduced bulk density in yield responses to sugar mill ash and filter mud/ash mixtures. in PROCEEDINGS-AUSTRALIAN SOCIETY OF SUGAR CANE TECHNOLOGISTS. 1999. WATSON FERGUSON AND COMPANY.
26. Barry, G., et al., Recycling sugar industry by-products and municipal biosolids on canelands. Environmental short course for sustainable sugar production CRC for Sustainable Sugar Production, Townville, 2000.
27. Schroeder, B., A. Wood, and G. Kingston. Re-evaluation of the basis for fertiliser recommendations in the Australian sugar industry. in PROCEEDINGS-AUSTRALIAN SOCIETY OF SUGAR CANE TECHNOLOGISTS. 1998. WATSON FERGUSON AND COMPANY.
28. Wegener, M. Re-evaluation of the basis for fertiliser recommendations in the Australian sugar industry: an economic perspective. 1999. Australian Society of Sugar Cane Technologists.
29. Lory, J., Managing manure phosphorous to protect water quality, Soil and fertiliser management, Agricultural MU Guide, MU Extension, University of Missouri, 2000.
30. Bhat, S.A., J. Singh, and A.P. Vig, Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test. Environmental Science and Pollution Research, 2015. 22(15): p. 11236-11254.
31. Suffo, M., M. De La Mata, and S. Molina, A sugar-beet waste based thermoplastic agro-composite as substitute for raw materials. Journal of Cleaner Production, 2020. 257: p. 120382.
32. Lashen, Z.M., et al., Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beet processing-and clay brick factory-solid wastes. Journal of Hazardous Materials, 2022: p. 128205.
33. Honarvar, M., et al., Possibility of producing compost and vermicompost from sugar beet waste in the sugar factory. 2011.
34. Beiki, H. and M. Keramati, Improvement of methane production from sugar beet wastes using TiO2 and Fe3O4 nanoparticles and chitosan micropowder additives. Applied biochemistry and biotechnology, 2019. 189(1): p. 13-25.
35. Council, A.C., Code of Practice for Sustainable Cane Growing in Queensland, 1998.
36. Barry, G., A. Price, and P. Lynch. Some implications of the recycling of sugar industry by-products. in PROCEEDINGS-AUSTRALIAN SOCIETY OF SUGAR CANE TECHNOLOGISTS. 1998. WATSON FERGUSON AND COMPANY.