1. Ohanenye, IC, Tsopmo, A, Ejike, CECC, Udenigwe, CC. 2020. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci. Technol; 101: 213–22. https://doi.org/10.1016/j.tifs.2020.05.003
2. Richter, CK, Skulas-Ray, AC, Champagne, CM, Kris-Etherton, PM. 2015. Plant protein and animal proteins: Do they differentially affect cardiovascular disease risk? Adv. Nutr; 6(6): 712–28. https://doi.org/10.3945/an.115.009654
3. Gharibzahedi, SMT, & Smith, B. 2020. The functional modification of legume proteins by ultrasonication: A review. Trends Food Sci. Technol; 98: 107–16. https://doi.org/10.1016/j.tifs.2020.02.002
4. Du, M, Xie, J, Gong, B, Xu, X, Tang, W, Li, X, Li, C, Xie, M. 2018. Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocoll; 76: 131–40. https://doi.org/10.1016/j.foodhyd.2017.01.003
5. Hoque, MS, Benjakul, S, Prodpran, T, Songtipya, P. 2011. Properties of blend film based on cuttlefish (Sepia pharaonis) skin gelatin and mungbean protein isolate. Int. J. Biol. Macromol; 49(4): 663–73. https://doi.org/10.1016/j.ijbiomac.2011.06.028
6. Feyzi, S, Milani, E, Golimovahhed, QA. 2018. Grass Pea (Lathyrus sativus L.) Protein Isolate: The Effect of Extraction Optimization and Drying Methods on the Structure and Functional Properties. Food Hydrocoll; 74: 187–96. https://doi.org/10.1016/j.foodhyd.2017.07.031
7. Paucar-Menacho, L. M, Peñas, E, Dueñas, M, Frias, J, Martínez-Villaluenga, C. 2017. Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT - Food Sci. Technol: 76: 245–52. https://doi.org/10.1016/j.lwt.2016.07.038
8. Ebert, AW, Chang, CH, Yan, MR, Yang, RY. 2017. Nutritional composition of mungbean and soybean sprouts compared to their adult growth stage. Food Chem; 237: 15–22. https://doi.org/10.1016/j.foodchem.2017.05.073
9. Wen, C, Zhang, J, Yao, H, Zhou, J, Duan, Y, Zhang, H, Ma, H. 2019. Advances in renewable plant-derived protein source: The structure, physicochemical properties affected by ultrasonication. Ultrason. Sonochem; 53(December): 83–98. https://doi.org/10.1016/j.ultsonch.2018.12.036
10. Byanju, B, Rahman, MM, Hojilla-Evangelista, MP, Lamsal, BP. 2020. Effect of high-power sonication pretreatment on extraction and some physicochemical properties of proteins from chickpea, kidney bean, and soybean. Int. J. Biol. Macromol; 145: 712–21. https://doi.org/10.1016/j.ijbiomac.2019.12.118
11. Belwal, T, Huang, H, Li, L, Duan, Z, Zhang, X, Aalim, H, Luo, Z. 2019. Optimization model for ultrasonic-assisted and scale-up extraction of anthocyanins from Pyrus communis ‘Starkrimson’ fruit peel. Food Chem; 297(June).https://doi.org/10.1016/j.foodchem.2019.124993
12. Cevallos-Casals, BA, Cisneros-Zevallos, L. 2010. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem; 119(4): 1485–90. https://doi.org/10.1016/j.foodchem.2009.09.030
13. Wali, A, Wubulikasimu, A, Mirzaakhmedov, S, Gao, Y, Omar, A, Arken, A, Yili, A, Aisa, HA. 2019. Optimization of scorpion protein extraction and characterization of the proteins’ functional properties. Molecules; 24(22): 1–16. https://doi.org/10.3390/molecules24224103
14. Tsumura, K, Saito, T, Tsuge, K, Ashida, H, Kugimiya, W, Inouye, K. 2005. Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT - Food Sci. Technol; 38(3): 255–61. https://doi.org/10.1016/j.lwt.2004.06.007
15. Barba, FJ, Boussetta, N, Vorobiev, E. 2015. Emerging technologies for the recovery of isothiocyanates, protein and phenolic compounds from rapeseed and rapeseed press-cake: Effect of high voltage electrical discharges. Innov. Food Sci. Emerg. Technol; 31: 67–72. https://doi.org/10.1016/j.ifset.2015.06.008
16. Kaushik, P, Dowling, K, McKnight, S, Barrow, C. J, Wang, B, Adhikari, B. 2016. Preparation, characterization and functional properties of flax seed protein isolate. Food Chem; 197: 212–20. https://doi.org/10.1016/j.foodchem.2015.09.106
17. Shahram, H, Dinani, ST, Amouheydari, M. 2019. Effects of pectinase concentration, ultrasonic time, and pH of an ultrasonic-assisted enzymatic process on extraction of phenolic compounds from orange processing waste. J. Food Meas. Charact; 13(1): 487–98. https://doi.org/10.1007/s11694-018-9962-6
18. Maher, M, Taghian Dinani, S, Shahram, H. 2020. Extraction of phenolic compounds from lemon processing waste using electrohydrodynamic process. J. Food Meas. Charact; 14(2): 749–60. https://doi.org/10.1007/s11694-019-00323-0
19. Chukwumah, YC, Walker, LT, Verghese, M, Ogutu, S. 2009. Effect of frequency and duration of ultrasonication on the extraction efficiency of selected isoflavones and trans-resveratrol from peanuts (Arachis hypogaea). Ultrason. Sonochem; 16(2): 293–99. https://doi.org/10.1016/j.ultsonch.2008.07.007
20. Chemat, F, Rombaut, N, Sicaire, A, Meullemiestre, A, Abert-vian, M. 2016. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. Ultrason. Sonochem; https://doi.org/10.1016/j.ultsonch.2016.06.035
21. Khadhraoui, B, Ummat, V, Tiwari, BK, Fabiano-tixier, AS, Chemat, F. 2021. Ultrasonics Sonochemistry Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. Ultrason. Sonochem; 76: 105625. https://doi.org/10.1016/j.ultsonch.2021.105625
22. Higuera-Barraza, OA, Del Toro-Sanchez, CL, Ruiz-Cruz, S, Márquez-Ríos, E. 2016. Effects of high-energy ultrasound on the functional properties of proteins. Ultrason. Sonochem; 31: 558–62. https://doi.org/10.1016/j.ultsonch.2016.02.007
23. Zhu, Z, Zhu, W, Yi, J, Liu, N, Cao, Y, Lu, J, Andrew, E, Julian, D. 2018. Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Res. Int; 106: 853–61. https://doi.org/10.1016/j.foodres.2018.01.060
24. Makino, K, Ohshima, H, Kondo, T. 1987. Electrostatic interaction of ion-penetrable membranes. Effects of ionic solubility. Colloid Polym. Sci; 265(10): 911–15. https://doi.org/10.1007/BF0142182
25. Hu, H, Cheung, IWY, Pan, S, Li-Chan, ECY. 2015. Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin. Food Hydrocoll; 45: 102–10. https://doi.org/10.1016/j.foodhyd.2014.11.004
26. Wu, W, Hua, Y, Lin. 2014. Effects of oxidative modification on thermal aggregation and gel properties of soy protein by malondialdehyde. J. Food Sci. Technol; 51(3): 485–93. https://doi.org/10.1007/s13197-011-0533-7
27. Malik, MA, Sharma, HK, Saini, CS. 2017. High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrason. Sonochem; 39: 511–19. https://doi.org/10.1016/j.ultsonch.2017.05.026
28. Lam, ACY, Can Karaca, A, Tyler, RT, Nickerson, MT. 2018. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int; 34(2): 126–47. https://doi.org/10.1080/87559129.2016.1242135
29. Bamdad, F, Dokhani, S, Keramat, J. 2009. Functional assessment and subunit constitution of Lentil (lens culinaris) proteins during Germination. Int. J. Agric. Biol; 11(6): 690–94.
30. Du, S, kui, Jiang, H, Yu, X, Jane, lin, J. 2014. Physicochemical and functional properties of whole legume flour. LWT - Food Sci. Technol; 55(1): 308–13. https://doi.org/10.1016/j.lwt.2013.06.001
31. Ravaghi, M, Tehrani, MM Asudeh, A. 2010. Evaluation of the operational characteristics of four types of soy flour. Iran J Sci Technol; 6(3): 223–28.
32. Zayas, JF, Zayas, JF. Oil and Fat Binding Properties of Proteins. 1997. Funct. Proteins Food; 1: 228–59. https://doi.org/10.1007/978-3-642-59116-7_5
33. Paglarini, CS, Martini, S, Pollonio, MAR. 2019. Physical properties of emulsion gels formulated with sonicated soy protein isolate. Int. J. Food Sci. Technol; 54(2): 451–59. https://doi.org/10.1111/ijfs.13957
34. Franzen, KL, Kinsella, JE. 1976. Functional Properties of Succinylated and Acetylated Soy Protein. J. Agric. Food Chem; 24(4): 788–95. https://doi.org/10.1021/jf60206a036
35. Ren, XLiC, Yang, F, Huang, Y, Huang, C, Zhang, K. 2020. Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality. J. Food Eng; 265: 109697. https://doi.org/10.1016/j.jfoodeng.2019.109697
36. Sheng, L, Wang, Y, Chen, J, Zou, J, Wang, Q, Ma, M. 2018. Influence of high-intensity ultrasound on foaming and structural properties of egg white. Food Res. Int; 108, 604-10. https://doi.org/10.1016/j.foodres.2018.04.007
37. Tang, S, Du, Q, Fu, Z. 2021. Ultrasonics Sonochemistry Ultrasonic treatment on physicochemical properties of water-soluble protein from Moringa oleifera seed. Ultrason. Sonochem; 71(September 2020): 105357. https://doi.org/10.1016/j.ultsonch.2020.105357
38. Nguyen, DQ, Mounir, S, Allaf, K, Allaf, K. 2019. Functional Properties of Water Holding Capacity, Oil Holding Capacity, Wettability, and sedimentation of swell-dried soy bean powder. Sch. J. Eng. Tech; 3: 402–12.
39. Iftikhar, M, Zhang, H, Iftikhar, A, Raza, A, Begum, N, Tahamina, A, Syed, H, Khan, M, Wang, J. 2020. Study on optimization of ultrasonic assisted extraction of phenolic compounds from rye bran. LWT - Food Sci. Technol; 134: 110243. https://doi.org/10.1016/j.lwt.2020.110243
40. Martínez-Velasco, A, Lobato-Calleros, C, Hernández-Rodríguez, BE, Román-Guerrero, A, Alvarez-Ramirez, J, Vernon-Carter, EJ. 2018. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrason. Sonochem; 44: 97–105. https://doi.org/10.1016/j.ultsonch.2018.02.007
41. Huang, L, Ding, X, Li, Y, Ma, H. 2019. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid. Food Chem.; 279(301): 114–119. https://doi.org/10.1016/j.foodchem.2018.11.147
42. Hu, H, Fan, X, Zhou, Z, Xu, X, Fan, G, Wang, L, Huang, X, Pan, S, Zhu, L. 2013. Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrason. Sonochem.; 20(1): 187–195. https://doi.org/10.1016/j.ultsonch.2012.07.011
43. Kaji, R, Muranaka, Y, Otsuka, K, Hishinuma, Y. 1986. Water absorption by coals: effects of pore structure and surface oxygen. Fuel; 65(2): 288–91. https://doi.org/10.1016/0016-2361(86)90023-2
44. Sompech, S, Srion, A, Nuntiya, A. 2012. The effect of ultrasonic treatment on the particle size and specific surface area of LaCoO3. Procedia Eng; 32: 1012–18. https://doi.org/10.1016/j.proeng.2012.02.047
45. Wu, C, Ma, W, Chen, Y, Navicha, WB, Wu, D, Du, M. 2019. The water holding capacity and storage modulus of chemical cross-linked soy protein gels directly related to aggregates size. LWT - Food Sci. Technol; 103: 125–30. https://doi.org/10.1016/j.lwt.2018.12.064
46. Tan, MC, Chin, NL, Yusof, YA, Abdullah, J. 2016. Effect of high power ultrasonic treatment on whey protein foaming quality. Int. J. Food Sci. Technol; 51(3): 617–24. https://doi.org/10.1111/ijfs.13013
47. Hou, F, Ding, W, Qu, W, Oladejo, AO, Xiong, O, Zhang, W, He, R, Ma, H. 2017. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation. Food Chem; 218: 207–15. https://doi.org/10.1016/j.foodchem.2016.09.064
48. Rodsamran, P, Sothornvit, R. 2018. Physicochemical and functional properties of protein concentrate from by-product of coconut processing. Food Chem; 241: 364–71. https://doi.org/10.1016/j.foodchem.2017.08.116
49. Palaniappan, PR, Vijayasundaram, V. 2008. FTIR study of arsenic induced biochemical changes on the liver tissues of fresh water fingerlings Labeo rohita. Rom. J Biophysv; 18(2): 135–44.
50. Su, JF, Huang, Z, Yuan, XY, Wang, XY, Li, M. 2010. Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr. Polym; 79(1): 145–53. https://doi.org/10.1016/j.carbpol.2009.07.035
51. Zeng, HY, Cai, LH, Cai, XL, Wang, YJ, Li, YQ. 2011. Structure characterization of protein fractions from lotus (Nelumbo nucifera) seed. J. Mol. Struct; 1001(1–3): 139–44. https://doi.org/10.1016/j.molstruc.2011.06.031
52. Barth, A. Infrared spectroscopy of proteins. 2007. Biochim. Biophys. Acta – Bioenerg; 1767(9): 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004
53. Kudre, TG, Benjakul, S, Kishimura, H. 2013. Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. J. Sci. Food Agric; 93(10): 2429–36. https://doi.org/10.1002/jsfa.6052
54. Chandrapala, J, Zisu, B, Palmer, M, Kentish, S, Ashokkumar, M. 2011. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem; 18(5): 951–57. https://doi.org/10.1016/j.ultsonch.2010.12.016
55. Karki, B, Lamsal, BP, Grewell, D, Pometto, AL, Van Leeuwen, J, Khanal, SK, Jung, S. 2009. Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes. JAOCS, JAOCS, J. Am. Oil Chem. Soc; 86(10): 1021–28. https://doi.org/10.1007/s11746-009-1433-0
56. Purohit, AJ, & Gogate, PR. 2015. Ultrasound-Assisted Extraction of β-Carotene from Waste Carrot Residue: Effect of Operating Parameters and Type of Ultrasonic Irradiation. Sep. Sci. Technol; 50(10): 1507–17. https://doi.org/10.1080/01496395.2014.978472
57. Chen, Z, Wang, J, Liu, W, Chen, H. 2017. Physicochemical characterization, antioxidant and anticancer activities of proteins from four legume species. J. Food Sci. Technol; 54(4): 964–72. https://doi.org/10.1007/s13197-016-2390-x
58. Chemat, S, Lagha, A, AitAmar, H, Bartels, PV, Chemat, F. 2004. Comparison of conventional and ultrasound-assissted extraction of carvone and limonene from caraway seeds. Flavour Fragr. J; 19(3): 188–95. https://doi.org/10.1002/ffj.1339