بهینه‌یابی و ارزیابی ویژگی‌های کیفی نان بدون گلوتن بر پایه آرد کینوای حاوی صمغ زانتان و آنزیم لکاز در طی دوره نگهداری

نویسندگان
1 دانشجوی دکتری، گروه علوم و مهندسی صنایع غذایی، دانشگاه آزاد اسلامی، واحد شهرضا ، شهرضا، ایران
2 استادیار، گروه علوم و مهندسی صنایع غذایی، دانشگاه آزاد اسلامی، واحد شهرضا ، شهرضا، ایران
3 استاد، مرکز تحقیقات علوم دارویی و فراورده های آرایشی، دانشگاه علوم پزشکی کرمان، کرمان، ایران
4 دانشیار، بخش علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران
چکیده
بیماری سلیاک رایجترین بیماری ناشی از مصرف گلوتن است و تنها راه پیشگیری از آن استفاده از مواد غذایی فاقد گلوتن می‌باشد. هدف از این پژوهش بهینه‌یابی فرمولاسیون نان بدون گلوتن بر پایه آرد کینوا، آنزیم لکاز و صمغ زانتان بود. برای این منظور، ویژگی‌های حسی و بافت نان تحت تأثیر متغیرهای مستقل شامل آرد کینوا (0-50 درصد)، صمغ زانتان (5/0- 0 درصد) و آنزیم لکاز (0-2 واحد فعالیت آنزیم به ازای هر گرم آرد (U/g)) با استفاده از روش سطح پاسخ و بر اساس طرح مرکب مرکزی ارزیابی شدند. سپس برخی ویژگی‌های کیفی نان‌های بدون گلوتن در شرایط بهینه با نمونه شاهد (نان بدون گلوتن حاوی آرد برنج و ذرت فاقد آرد کینوا، آنزیم لکاز و صمغ زانتان) در مدت زمان 7 روز مقایسه شد. نتایج نشان داد آرد کینوا و آنزیم لکاز تأثیر معنیداری بر ویژگیهای حسی نمونه‌های نان شامل رنگ پوسته نان، تخلخل، طعم، عطر و بو، سفتی و پذیرش کلی داشتند (p<0.05). در حالیکه اثر سطح درجه دوم صمغ بر پذیرش کلی و همچنین برهم‌کنش آنزیم لکاز و صمغ زانتان بر سفتی نان معنی‌دار بود (p<0.05). فرمولاسیون نان بهینه شامل 40 درصد آرد کینوا، 46/0 درصد صمغ زانتان و U/g 2 آنزیم لکاز بود. مقایسه نمونه بهینه با نمونه شاهد بدون گلوتن نشان داد که میزان آنتالپی و دمای پیک نمونه نان شاهد بیشتر از نمونه بهینه بوده و بیانگر بیاتی بیشتر آن می‌باشد. از نظر فاکتورهای بافت و ارزیابی حسی، نمونه بهینه به صورت معنی‌داری نسبت به نمونه شاهد بهتر بود. ولی از نظر شاخص رنگ L*، نمونه شاهد مقادیر بالاتری نشان داد (p<0.05).
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization and evaluation of quality characteristics of gluten-free bread based on quinoa flour containing xanthan gum and laccase enzyme during storage

نویسندگان English

Ghodsieh Alizadeh-Bahaabadi 1
leila lakzadeh 2
Hamidreza Forootanfar 3
Hamidreza Akhavan 4
1 PhD. student, Department of Food Science and Technology, Islamic Azad University, Shahreza Branch,
2 Assistant Professor, Department of Food Science and Technology, Islamic Azad University, Shahreza Branch, Shahreza, Iran
3 Professor, Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
4 Associate Professor, Department of Food Science and Technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده English

Celiac disease is the most common disease caused by gluten consumption and the only way to prevent it is to use gluten-free foods. The aim of this study was to optimization the formulation of gluten-free bread based on quinoa flour, laccase enzyme, and xanthan gum. For this purpose, the sensory properties and texture of bread under the influence of independent variables including quinoa flour (0-50%), xanthan gum (0-0.5%), and laccase enzyme (0-2 units of enzyme activity per gram of flour (U/g) were evaluated using the response level method based on the central composite design. Then some qualitative characteristics of gluten-free bread sample in optimal conditions were compared with the control sample (gluten-free bread containing rice and corn flours without quinoa flour, laccase enzyme, and xanthan gum) for 7 days of storage. The results showed that quinoa flour and laccase enzyme had a significant effect on sensory properties including crust color, porosity, taste, aroma, firmness, and overall acceptibility (p<0.05) of breads. While the effect of quadratic level of gum on overall acceptibility as well as the interaction of laccase enzyme and xanthan gum on bread firmness was significant (p<0.05). The optimal bread formulation consisted of 40% quinoa flour, 0.46% xanthan gum, and 2 U/g laccase enzyme. Comparison of the gluten-free optimal sample with the control gluten-free sample showed that the enthalpy and peak temperature of the control bread was higher than the optimal bread, which indicates more staleness. In terms of textural properties and sensory evaluation, the optimal sample was significantly better than the control sample. However, in terms of L* color indice, the control sample showed higher values (p<0.05).

کلیدواژه‌ها English

Gluten-free bread
Optimization
Laccase enzyme
Quinoa flour
shelf life
[1] Comino, I, Bernardo, D, Bancel, E, Moreno, MdL, Sánchez, B, Barro, F. 2016. Identification and molecular characterization of oat peptides implicated on coeliac immune response. Food & Nutrition Research, 60(1): 1-13.
[2] Giménez, MA, Drago, SR, Bassett, MN, Lobo, MO, Sammán, NC. 2016. Nutritional improvement of corn pasta-like product with broad bean (Vicia faba) and quinoa (Chenopodium quinoa). Food Chemistry, 199: 150-156.
[3] Espinosa-Ramírez, J, Garzon, R, Serna-Saldivar, SO, Rosell, CM. 2018. Functional and nutritional replacement of gluten in gluten-free yeast-leavened breads by using β-conglycinin concentrate extracted from soybean flour. Food Hydrocolloids, 84: 353-360.
[4] Ayala-Soto, FES-S, Sergio, O. Welti-Chanes, J. 2017. Effect of arabinoxylans and laccase on batter rheology and quality of yeast-leavened gluten-free breads. Journal of Cereal Science, 73:10-17.
[5] Ozturk, OK., Mert, B. 2018. The effects of microfluidization on rheological and textural properties of gluten-free corn breads. Food Research International, 105: 782-792
[6] Marco, C., Rosell, CM. 2008. Functional and rheological properties of protein enriched gluten free composite flours. Journal of Food Engineering, 88(1):94-103.
[7] Villanueva, M., Harasym, J., Muñoz, JM., Ronda, F. 2019. Rice flour physically modified by microwave radiation improves viscoelastic behavior of doughs and its bread-making performance. Food Hydrocolloids, 90: 472-481.
[8] Calle, J., Benavent-Gil, Y., Rosell, CM. 2020. Development of gluten free breads from Colocasia esculenta flour blended with hydrocolloids and enzymes. Food Hydrocolloids, 98:105243.
[9] Selinheimo, E., Autio, K., Kruus, K., Buchert, J. 2007. Elucidating the mechanism of laccase and tyrosinase in wheat bread making. Journal of Agricultural and Food Chemistry. 55(15): 6357-6365.
[10] Labat, E., Morel, M. H., and Rouau, X. 2000. Effects of laccase and ferulic acid on wheat flour doughs. American Association of Cereal Chemistry, 77(6): 823-828.
[11] Osma, JF., Toca-Herrera,, JL., Rodríguez-Couto, S. 2010. Uses of laccases in the food industry. Enzyme Research, 2010: 1-8.
[12] Iglesias-Puig, E., Monedero, V., Haros, M. 2015. Bread with whole quinoa flour and bifidobacterial phytases increases dietary mineral intake and bioavailability. LWT- Food Science and Technology, 60(1): 71-77.
[13] Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D. 2012. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 55(2): 132-138.
[14] Burešová, I., Tokár, M., Mareček, J., Hřivna , L., Faměra, O., Šottníková, V, 2017. The comparison of the effect of added amaranth, buckwheat, chickpea, corn, millet and quinoa flour on rice dough rheological characteristics, textural and sensory quality of bread. Journal of Cereal Science, 75:158-164.
[15] Elgeti, D., Nordlohne, SD., Föste, M., Besl, M., Linden, MH., Heinz, V. 2014. Volume and texture improvement of gluten-free bread using quinoa white flour. Journal of Cereal Science, 59(1): 41-47
[16] Ribotta, PD., Le Bail, A. 2007. Thermo-physical assessment of bread during staling. LWT- Food Science and Technology, 40(5): 879-884.
[17] Gujral, HS., Haros, M., Rosell, CM. 2004. Improving the texture and delaying staling in rice flour chapati with hydrocolloids and α-amylase. Journal of Food Engineering, 65(1): 89-94.
[18] AACC. 2000. Approved Methods of the American Association of Cereal Chemists, 10th Ed. , Vol. 2. American Association of Cereal Chemists, USA.
[19] Mancebo, C. M., Merino, C., Martínez, M. M., Gómez, M. 2015. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality. Journal of Food Science and Technology, 52(10), 6323–6333.
[20] Fan, Z. 2016. Staling of Chinese steamed bread: Quantification and control. Trends in Food Science & Technology, 55: 18-127.
[21] Moore, M., M., Schober, T., J., Dockery, P., Arendt, E., K. 2004. Textural comparisons of gluten-free and wheat-based doughs, batters, and breads. Cereal Chemistry, 81(5): 567-575.
[22] Gerrard, JA. 2002. Protein–protein crosslinking in food: methods, consequences, applications. Trends in Food Science & Technology, 13(12): 391-399.
[23. Storck, CR., Zavareze, E.D., Gularte, M.A., Elias, M.C., Rosell, C.M., Dias, A.R.G. 2013. Protein enrichment and its effects on gluten-free bread characteristics. LWT- Food Science and Technology, 53(1): 346-354.
[24] Rai, K., Gowda, C., Reddy, B., Sehgal, S. 2008. Adaptation and potential uses of sorghum and pearl millet in alternative and health foods. Comprehensive Reviews in Food Science and Food Safety, 7(4): 320-396.
[25] Emire, SA., Tiruneh, DD. 2012. Optimization of formulation and process conditions of gluten-free bread from sorghum using response surface methodology. Journal of Food Processing & Technology, 3(5): 1-14.
[26] Rosell, CM., Rojas, JA., De Barber, CB. 2001. Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids.15(1): 75-81
[27] Renzetti, S., Courtin, C.M., Delcour, J.A., Arendt, E.K. 2010. Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: rheological, biochemical and microstructural background. Journal of Food Chemistry, 119(4):1465-1473.
[28] Stikic, R.., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Jacobsen, S., Milovanovic, M., 2012. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations, Journal of Cereal Science, 55: 132-138.
[29] Alvarez-Jubete, LA., Mark, A., Elke, K., Gallagher, E. 2010. Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. European Food Research and Technology, 230(3): 437-445.
[30] Shittu, TA., Aminu, RA., Abulude, EO. 2009. Functional effects of xanthan gum on composite cassava-wheat dough and bread. Food Hydrocolloids. 23(8): 2254-2260.
[31] Katina, K., Salmenkallio-Marttila, M., Partanen, R., Forssell, P,. Autio, K, 2006. Effects of sourdough and enzymes on staling of high-fibre wheat bread. LWT - Food Science and Technology, 39(5): 479-91.
[32] Caballero, PA., Gómez, M., Rosell, CM. 2007. Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination. Journal of Food Engineering, 81(1): 42-53.
[33] Giovanelli, G., Peri, C., Borri, V., 1997. Effects of baking temperature on crumb‐staling kinetics. Cereal Chemistry, 74(6): 710-714.
[34] Sabanis, D., Tzia, C. 2011. Effect of hydrocolloids on selected properties of gluten-free dough and bread, Food Science and Technology International, 17: 279.
[35] Irshad, M., S, Shalini K. G., Laxmi, A. 2007. Staling of chapatti (Indian unleavened flat bread). Food Chemistryy, 101: 113–119.
[36] Biliaderis, CG., Izydorczyk, MS., Rattan, O. 1996. Effect of arabinoxylans on bread making quality of wheat flours. Food Chemistry, 53: 165-171.
[37] Fessas, D., Schiraldi, A. 1998. Texture and staling of bread crumb: effect of water extractable proteins and pentosans. Therm Ochemica Acta; 323: 17-26.