[1] Zeng, Z., Luo, JY., Zuo, FL., Yu, R., Zhang, Y., Ma, HQ.& Chen, SW. 2016. Bifidobacteria possess inhibitory activity against dipeptidyl peptidase‐IV. Letters in Applied Microbiology, 62(3), 250-255.
[2] Rajoka, MS., Shi, J., Mehwish, HM., Zhu, J., Li, Q., Shao, D., Huang, Q. & Yang, H. 2017. Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness, 6(3), 121-130.
[3] Cabello-Olmo, M., Oneca, M., Torre, P., Sainz, N., Moreno-Aliaga, MJ., Guruceaga, E., Díaz, JV., Encio, IJ., Barajas, M. & Araña, M. 2019. A fermented food product containing lactic acid bacteria protects ZDF rats from the development of type 2 diabetes. Nutrients, 11(10), 25-30.
[4] Graham, K., Rea, R., Simpson, P. & Stack, H. 2019. Enterococcus faecalis milk fermentates display antioxidant properties and inhibitory activity towards key enzymes linked to hypertension and hyperglycaemia. Journal of Functional Foods, 58, 292-300.
[5] Chen, P., Zhang, Q., Dang, H., Liu, X., Tian, F., Zhao, J., Chen, Y., Zhang, H. & Chen, W. 2014. Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control, 35(1), 65-72.
[6] Qian, B., Xing, M., Cui, L., Deng, Y., Xu, Y., Huang, M. & Zhang, S. 2011. Antioxidant, antihypertensive and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340.
Journal of Dairy Research, 78(1), 72-79.
[7] Moslehishad, M., Ehsani, MR., Salami, M., Mirdamadi, S., Ezzatpanah, H., Naslaji, AN. & Moosavi-Movahedi, AA. 2013. The comparative assessment of ACE-inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. International Dairy Journal, 29(2), 82-87.
[8] Ayyash, M., Al-Nuaimi, AK., Al-Mahadin, S. & Liu, SQ. 2018. In vitro investigation of anticancer and ACE-inhibiting activity, α-amylase and α-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. Food Chemistry, 15(239), 588-597.
[9] González-Montoya, M., Hernández-Ledesma, B., Mora-Escobedo, R. & Martínez-Villaluenga, C. 2018. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes. International Journal of Molecular Sciences, 19(10), 1-14.
[10] Muganga, L., Liu, X., Tian, F., Zhao, J., Zhang, H. & Chen, W. 2015. Screening for lactic acid bacteria based on antihyperglycaemic and probiotic potential and application in synbiotic set yoghurt. Journal of Functional Foods, 1(16), 125-136.
[11] Tagliazucchi, D., Martini, S. & Solieri, L. 2019. Bioprospecting for bioactive peptide production by lactic acid bacteria isolated from fermented dairy food. Fermentation, 5(4), 1-34.
[12] Stratton, I. M., Adler, A. I., Neil, H. A. W., Matthews, D. R., Manley, S. E., Cull, C. A., ... & Holman, R. R. 2000. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. British Medical Journal, 321(7258), 405-412.
[13] Dan, T., Ren, W., Liu, Y., Tian, J., Chen, H., Li, T., & Liu, W. 2019. Volatile flavor compounds profile and fermentation characteristics of milk fermented by Lactobacillus delbrueckii subsp. bulgaricus. Frontiers in Microbiology, 10, 1-12.
[14] Soleymanzadeh, N., Mirdamadi, S. & Kianirad M. 2016. Antioxidant activity of camel and bovine milk fermented by lactic acid bacteria isolated from traditional fermented camel milk (Chal). Dairy Science & Technology, 96(4), 443-457.
[15] Hatree, EF. 1972. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48, 422-427.
[16] Church, FC, Swaisgood, HE., Porter, DH., Catignani, GL. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science, 66(6), 1219-1227.
[17] Son, S. & Lewis, BA. 2002. Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: Structure-activity relationship. Journal of Agricultural and Food Chemistry, 50(3), 468-472.
[18] Mukherjee, S,. Pawar, N., Kulkarni, O., Nagarkar, B., Thopte, S., Bhujbal, A. & Pawar, P. (2011). Evaluation of free-radical quenching properties of standard Ayurvedic formulation Vayasthapana Rasayana. BMC Complementary and Alternative Medicine, 11(1), 1-6.
[19] Al Kanhal, H. A. 2010. Compositional, technological and nutritional aspects of dromedary camel milk. International Dairy Journal, 20(12), 811-821.
[20] Vollet Marson, G., Belleville, M. P., Lacour, S. & Dupas Hubinger, M. 2021. Membrane fractionation of protein hydrolysates from by-Products: recovery of valuable compounds from spent yeasts. Membranes, 11(23), 1-19.
[21] Rubak, YT., Nuraida, L., Iswantini, D. &Prangdimurti, E. 2020. Angiotensin-I-converting enzyme inhibitory peptides in milk fermented by indigenous lactic acid bacteria. Veterinary World, 13(2), 345-353.
[22] Aloğlu, H. Ş., & Öner, Z. 2011. Determination of antioxidant activity of bioactive peptide fractions obtained from yogurt. Journal of Dairy Science, 94(11), 5305-5314.
[23] Soleymanzadeh, N., Mirdamadi, S., Mirzaei, M. &Kianirad, M. 2019. Novel β-casein derived antioxidant and ACE-inhibitory active peptide from camel milk fermented by Leuconostoc lactis PTCC1899: Identification and molecular docking. International Dairy Journal, 97, 201-208.
[24] Ramchandran, L., & Shah, N. P. 2008. Proteolytic profiles and angiotensin‐I converting enzyme and α‐glucosidase inhibitory activities of selected lactic acid bacteria. Journal of Food Science, 73(2), 75-81.
[25] Famuwagun, A. A., Alashi, A. M., Gbadamosi, S. O., Taiwo, K. A., Oyedele, D., Adebooye, O. C., & Aluko, R. E. 2021. Effect of protease type and peptide size on the In vitro antioxidant, antihypertensive and anti-diabetic activities of eggplant leaf Protein hydrolysates. Foods, 10(5), 1-22.
[26] Castañeda-Pérez, E., Jiménez-Morales, K., Quintal-Novelo, C., Moo-Puc, R., Chel-Guerrero, L., & Betancur-Ancona, D. 2019. Enzymatic protein hydrolysates and ultrafiltered peptide fractions from Cowpea Vigna unguiculata L bean with in vitro antidiabetic potential. Journal of the Iranian Chemical Society, 16(8), 1773-1781.
[27] Frediansyah, A., Nurhayati, R., & Sholihah, J. 2019. Lactobacillus pentosus isolated from Muntingia calabura shows inhibition activity toward alpha-glucosidase and alpha-amylase in intra and extracellular level. 2nd International Conference on Natural Products and Bioresource Sciences-2018. In IOP Conference Series: Earth and Environmental Science, 251(1), 1-6.
[28] Son, SH., Jeon, HL., Yang, SJ., Lee, NK. & Paik HD. 2017. In vitro characterization of Lactobacillus brevis KU15006, an isolate from kimchi, reveals anti-adhesion activity against foodborne pathogens and antidiabetic properties. Microbial Pathogenesis, 112, 135-141.
[29] Yusuf, D., Nuraida, L., Dewanti-Hariyadi, R. &Hunaefi, D. 2021. In vitro Antioxidant and α-glucosidase inhibitory activities of Lactobacillus spp. isolated from indonesian kefir grains. Applied Food Biotechnology, 8(1), 39-46.
[30] Aguilar-Toalá, J. E., Santiago-López, L., Peres, C. M., Peres, C., Garcia, H. S., Vallejo-Cordoba, B., ... & Hernández-Mendoza, A. 2017. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. Journal of Dairy Science, 100(1), 65-75.
[31] Ngoh, YY., & Gan CY. 2016. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chemistry, 190, 331-337.
[32] Mirzaei, M., Mirdamadi, S., Ehsani, MR., Aminlari, M. & Hosseini, E. 2015. Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. Journal of Functional Foods, 19, 259-68.
[33] Wiriyaphan, C., Chitsomboon, B. & Yongsawadigul, J. 2012. Antioxidant activity of protein hydrolysates derived from threadfin bream surimi by products. Food Chemistry, 132, 104-111.
[34] Sarmadi, B.H., & Ismail, A. 2010. Antioxidative peptides from food proteins: a review. Peptides, 31(10),1949-1956.