بررسی تجربی و مدل‌سازی فرآیند خشک شدن صمغ دانه بالنگو با خشک‌کن فروسرخ به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی

نویسندگان
1 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران
2 گروه مهندسی ‌علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران
3 گروه مهندسی ‌علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران.
چکیده
از روش بهینه‌سازی الگوریتم ژنتیک می‌توان برای غلبه بر محدودیت‌های ذاتی شبکه عصبی مصنوعی استفاده کرد. روش الگوریتم ژنتیک- شبکه عصبی مصنوعی دارای قابلیت بالایی برای یافتن مقدار بهینه یک تابع هدف پیچیده است. در این مطالعه ابتدا جهت خشک‌کردن صمغ دانه بالنگو، از یک خشک‌کن فروسرخ استفاده گردید. در این خشک‌کن فروسرخ اثر فاصله نمونه‌ها از لامپ پرتودهی در سه سطح 5، 5/7 و 10 سانتی‌متر و اثر ارتفاع صمغ درون ظرف در سه سطح 5/0، 0/1 و 5/1 سانتی‌متر بر زمان خشک شدن و درصد کاهش وزن صمغ دانه بالنگو در طی زمان خشک‌کردن، مورد بررسی قرار گرفت. نتایج خشک‌کردن صمغ دانه بالنگو با روش فروسرخ نشان داد با کاهش فاصله نمونه‌ها از منبع حرارتی و همچنین کاهش ضخامت صمغ موجود در ظرف نمونه، زمان خشک‌کردن کاهش می‌یابد. با افزایش فاصله لامپ‌ها از 5 به 10 سانتی‌متر، میانگین زمان خشک شدن صمغ دانه بالنگو از 6/62 دقیقه به 6/87 دقیقه افزایش یافت. با افزایش ضخامت نمونه‌ها از 5/0 به 5/1 سانتی‌متر نیز میانگین زمان خشک شدن صمغ دانه بالنگو از 9/45 دقیقه به 2/109 دقیقه افزایش یافت. در مرحله بعد، این فرآیند توسط روش الگوریتم ژنتیک- شبکه عصبی مصنوعی با 3 ورودی (زمان پرتودهی، فاصله لامپ از سطح نمونه‌ها و ضخامت نمونه‌ها) و 1 خروجی (درصد کاهش وزن) مدل‌سازی شد. نتایج مدل‌سازی به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی نشان داد شبکه‌ای با ساختار 1-9-3 در یک لایه پنهان و با استفاده از تابع فعال‌سازی تانژانت هیپربولیک می‌تواند درصد کاهش وزن صمغ دانه بالنگو هنگام خشک شدن در خشک‌کن فروسرخ را با ضریب همبستگی بالا (999/0) و مقدار میانگین مربعات خطا پایین (788/0) پیش‌بینی نماید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental investigation and modeling of drying process of balangu seeds gum using infrared dryer by genetic algorithm-artificial neural network method

نویسندگان English

Navid Godini 1
Ashraf Gohari Ardabili 2
Fakhreddin Salehi 3
1 MSc Student, Department of Food Science and Technology, Bahar Faculty of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
2 Department of Food Science and Technology, Bahar Faculty of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
3 Department of Food Science and Technology, Bahar Faculty of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
چکیده English

The genetic algorithm (GA) optimization method can be used to overcome the inherent limitations of artificial neural network (ANN). Genetic algorithm–artificial neural network (GA-ANN) method has a high capability to find the optimum value of a complex objective function. In this study, first, to balangu seeds gum drying, an infrared dryer was used. In this infrared dryer, the effect of distance of samples from lamp at three levels of 5, 7.5 and 10 cm and the effect of height of the gum inside the container at three levels of 0.5, 1 and 1.5 cm on drying time and weight loss percentage of balangu seeds gum during drying time, were investigated. The results of balangu seeds gum drying using infrared method showed that with decreases in sample distance from the heat source and also with decreases in thickness of the gum in the sample container, drying time were decreased. With increasing in the lamp distance from 5 to 10 cm, the average drying time of balangu seeds gum increased from 62.6 minutes to 87.6 minutes. With sample thickness increasing from 0.5 to 1.5 cm, the average drying time of balangu seeds gum increased from 45.9 to 109.2 minutes. In the next step, this process was modeled by GA-ANN method with 3 inputs (radiation time, lamp distance from samples surface and thickness of samples) and 1 output (weight loss percentage). The results of modeling with GA-ANN method showed that the network with structure of 3-9-1 in a hidden layer and using the hyperbolic tangent activation function could predict the weight loss percentage of balangu seeds gum during drying in an infrared dryer with high correlation coefficient (0.999) and low mean squared error (0.788).

کلیدواژه‌ها English

Balangu seed gum
Genetic algorithm–artificial neural network
Radiation
Weight loss percentage
[1] Amini, G., Salehi, F., Rasouli, M. 2020. Drying process modeling of basil seed mucilage by infrared dryer using artificial neural network, Iranian journal of food science and technology. 17, 23-31.
[2] Salehi, F. 2020. Edible coating of fruits and vegetables using natural gums: A review, International Journal of Fruit Science. 20, S570-S589.
[3] Nowrouzi, S., Ghods Rohani, M., Rashidi, H. 2021. Effects of balangu seed gum on physicochemical and sensory characteristics of low-fat fresh yoghurts, Iranian Journal of Nutrition Sciences & Food Technology. 16, 69-78.
[4] Farokhpour, F., Roomiani, L., Zarinabadi, S. 2021. Experimental investigation of fish fillet drying process using IR radiation, Research and Innovation in Food Science and Technology. 10, 83-94.
[5] Salehi, F. 2020. Recent applications and potential of infrared dryer systems for drying various agricultural products: A review, International Journal of Fruit Science. 20, 586-602.
[6] Karaboga, D., Kaya, E. 2019. Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey, Artificial Intelligence Review. 52, 2263-2293.
[7] Fadaie, M., Hosseini Ghaboos, S. H., Beheshti, B. 2020. Characterization of dried persimmon using infrared dryer and process modeling using genetic algorithm-artificial neural network method, Journal of food science and technology (Iran). 17, 189-200.
[8] Nep, E. I., Conway, B. R. 2011. Physicochemical characterization of grewia polysaccharide gum: Effect of drying method, Carbohydrate Polymers. 84, 446-453.
[9] Doymaz, İ. 2012. Infrared drying of sweet potato (Ipomoea batatas L.) slices, Journal of Food Science and Technology. 49, 760-766.
[10] Satorabi, M., Salehi, F., Rasouli, M. 2021. Effect of edible coatings on the color and surface changes of apricot slices during drying in infrared system, Food science and technology. 18, 21-30.
[11] Gitiban, A., Asefi, N. 2019. Modeling of hardness and drying kinetics of "quince" fruit drying in an infrared convection dryer using the artificial neural network, Iranian Food Science and Technology Research Journal. 15, 465-475.
[12] Ghanad Zadeh, H., Abbasi, B., Ghavidel, M., Emami, N. 2016. Drying kinetics of tea using artificial neural network model, Journal of food science and technology(Iran). 13, 227-237.