[1] Pakfetrat, S., Amiri, S., Radi, M., Abedi, E., & Torri, L. (2019). Reduction of phytic acid, aflatoxins and other mycotoxins in wheat during germination. Journal of the Science of Food and Agriculture, 99(10), 4695–4701.
[2] Duarte, S. C., Pena, A., & Lino, C. M. (2010). A review on ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. Food Microbiology, 27(2), 187–198.
[3] Shetty, P., Jespersen, L. (2006). Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Technol. 17:48–55.
[4] Armando, M. R., Pizzolitto, R. P., Dogi, C. A., Cristofolini, A., Merkis, C., Poloni, V., Dalcero, A. M., & Cavaglieri, L. R. (2012). Adsorption of ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness. Journal of Applied Microbiology, 113(2), 256–264.
[5] Prado G, Madeira JE, Morais VA, et al (2011). Reduction of aflatoxin B1 in stored peanuts (Arachis hypogaea L.) using Saccharomyces cerevisiae. J Food Protect 2011; 74:1003-6.
[6] EL-Nezami, H., Kankaanpau, P. Salminen, S. And Ahokas, J. (1998a). Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food and Chemical Toxicology. 36:321-326.
[7] Shetty, P.H., Hald, H., Jespersen, L. (2007). Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. International Journal of Food Microbiology. 113: 41–46.
[8] Ojha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410–417.
[9] Majid, I., Nayik, G. A., & Nanda, V. (2015). Ultrasonication and food technology: A review. Cogent Food & Agriculture, 1(1), Article 1071022.
[10] Abedi, E., Pourmohammadi, K., Mousavi Fard, M., Sayadi, M. (2021). Comparison between surface hydrophobicity of heated and thermosonicated cells to detoxify aflatoxin B1 by co-culture Lactobacillus plantarum and Lactobacillus rhamnosus in sourdough: Modeling studies. LWT, (154), 112616.
[11] Karazhiyan, H., Mehraban Sangatash, M., Karazhyan, R., Mehrzad, A., & Haghighi, E. (2016). Ability of different treatments of Saccharomyces cerevisiae to surface bind aflatoxin M1 in yoghurt. Journal of Agricultural Science and Technology, 18(6), 1489-1498.
[12] Fazeli, M. R., Hajimohammadali, M., Moshkani, A., Samadi, N., Jamalifar, H., Khoshayand, M. R., Vaghari, E., & Pouragahi, S. (2009). Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria. Journal of Food Protection, 72(1), 189–192.
[13] Wang, J., & Guo, X. (2020). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390, 122156.
[14] Bueno, D. J., Casale, C. H., Pizzolitto, R. P., Salvano, M. A., & Oliver, G. (2007). Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: A theoretical model. Journal of Food Protection, 70(9), 2148–2154.
[15] Rahaie, S., Razvi, S.H. and Jomeh, E.Z. (2010). The ability of Saccharomyces cerevisiae strain in aflatoxin reduction in pistachio nuts. Journal of Food Science and Technology, 7: 81-88. [In Persian].
[16] Davoodi Moghadam, H., Shahidi, F., Tabatabaee Yazdi, F., Sarabi, M., Eshaghi, Z. (13992021). Investigation of the effect of live and acid-treated Saccharomyces cerevisiae on citrinin and pigments of Monascus purpureus. Journal of Research and Innovation in Food Science and Industry, Volume 1, Number 9, Pages 522-562.