تاثیر شدت قهوه‌ای شدن بر ویژگی‌های بین‌ سطحی کانژوگه صمغ ژلان – پروتئین سویا حاصل از واکنش مایلارد

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
2 دانشگاه فردوسی مشهد، دانشکده کشاورزی، گروه علوم و صنایع غذایی
چکیده
هدف از این پژوهش بررسی تأثیر شدت قهوه­ای شدن واکنش مایلارد بر ویژگی­های بین‏سطحی سامانه­های امولسیونی تثبیت شده با ایزوله پروتئین سویا بود. برقراری اتصال کووالانسی بین ایزوله پروتئین سویا و صمغ ژلان از طریق شدت قهوه­ای شدن تأیید و سپس کانژوگه­های پروتئین-پلی‏ساکارید حاصل با استفاده از روش خوشه‏بندی سلسله مراتبی تجمیعی وارد به سه خوشه با شدت قهوه­ای شدن بالا، متوسط و پایین طبقه‌بندی شدند. در ادامه، ویژگی­های امولسیون کنندگی (ظرفیت امولسیفایری، پایداری امولسیون و درصد پروتئین جذب شده)، پایداری حرارتی و رفتار رئولوژیکی سامانه­های امولسیونی تثبیت شده با خوشه­های فوق مورد ارزیابی قرار گرفت. ظرفیت امولسیفایری و پایداری امولسیون‏های روغن در آب، به طور مؤثرتری توسط کانژوگه­ ایزوله پروتئین سویا-صمغ ژلان با شدت قهوه­ای شدن بالا افزایش یافت که بیانگر نرخ مهاجرت و جذب سریع‌تر و متعاقباً درصد پروتئین جذب شده بالاتر این کانژوگه به فصل مشترک و همچنین تشکیل لایه ضخیم، پیوسته و ویسکوالاستیک همراه با ممانعت فضایی بالاتر در فضای بین‏سطحی آن بود. علاوه بر آن ویسکوزیته ظاهری امولسیون­ها در حضور کانژوگه­ با شدت قهوه­ای شدن بالاتر، به طور معنی­داری بیشتر از سامانه­های پایدار شده با سایر کانژوگه­ها بود. اگر چه؛ پایداری حرارتی امولسیون حاوی کانژوگه با شدت قهوه­ای شدن بالا در مقایسه با همتایان دیگر کمتر بود. بنابراین واکنش مایلارد در شرایط ملایم و کنترل شده با حداقل تشکیل ترکیبات نهایی می­تواند منجر به بهبود ویژگی­های بین‏سطحی پروتئین سویا به منظور بهبود کاربرد آن در صنعت مواد غذایی گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The impact of browning intensity on interfacial properties of gellan gum-soy protein conjugate obtained through the Maillard reaction

نویسندگان English

Yasaman Lavaei 1
Mehdi Varidi 2
Majid Nooshkam 1
1 Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Ferdowsi University of Mashhad, Faculty of Agriculture, Department of Food Science and Technology
چکیده English

This study was aimed to investigate the effect of Maillard reaction browning intensity (BI) on the interfacial properties of emulsion systems stabilized by soy protein isolate. The covalent bonding between soy protein isolate and gellan gum was confirmed by the BI and then the resulting protein-polysaccharide conjugates were classified into three low, medium, and high BI clusters using Hierarchical Agglomerative Clustering (HAC) method. Next, the emulsification properties (emulsifying capacity, emulsion stability, and the percentage of adsorbed protein), thermal stability, and rheological behavior of emulsion systems stabilized by the above clusters were evaluated. The emulsifying capacity and emulsion stability were increased more efficiently by the high BI soy protein isolate-gellan conjugate, showing its faster migration and absorption rate, and consequently higher percentage of absorbed protein to the interface, and also form a thicker, cohesive, and viscoelastic interfacial layer along with more steric repulsion at its oil/water interface. In addition, the apparent viscosity of emulsions in the presence of high BI conjugate was significantly higher than the systems stabilized by other conjugates (p<0.05). However, due to the more unmasked hydrophobic patches of the high BI conjugated protein, the thermal stability of its emulsion was lower compared to other counterparts. Therefore, the Maillard reaction under mild and controlled conditions along with minimal final compounds formation can improve the interfacial properties of soy protein to improve its application in the food industry.

کلیدواژه‌ها English

Interfacial activity
Soy protein
gellan gum
Maillard conjugate
Browning intensity
[1] Kutzli, I., Weiss, J., & Gibis, M. 2021. Glycation of Plant Proteins Via Maillard Reaction: Reaction Chemistry, Technofunctional Properties, and Potential Food Application. Foods, 10(2). doi:10.3390/foods10020376.
[2] Mu, L., ZHao, H., ZHao, M., Cui, C., & Liu, L. 2011. Physicochemical properties of soy protein isolates-acacia gum conjugates. Czech Journal of Food Sciences, 29(2), 129-136.
[3] O’Regan, J., & Mulvihill, D. M. 2010. Heat stability and freeze–thaw stability of oil-in-water emulsions stabilised by sodium caseinate–maltodextrin conjugates. Food Chemistry, 119(1), 182-190.
[4] Liu, G., & Zhong, Q. 2012. Glycation of whey protein to provide steric hindrance against thermal aggregation. Journal of Agricultural and Food Chemistry, 60(38), 9754-9762.
[5] Wen, C., Zhang, J., Qin, W., Gu, J., Zhang, H., Duan, Y., & Ma, H. 2020. Structure and functional properties of soy protein isolate-lentinan conjugates obtained in Maillard reaction by slit divergent ultrasonic assisted wet heating and the stability of oil-in-water emulsions. Food Chemistry, 331, 127374.
[6] Naik, R. R., Wang, Y., & Selomulya, C. 2021. Improvements of plant protein functionalities by Maillard conjugation and Maillard reaction products. Critical Reviews in Food Science and Nutrition, 1-26. doi:10.1080/10408398.2021.1910139
[7] Boostani, S., Aminlari, M., Moosavi-nasab, M., Niakosari, M., & Mesbahi, G. 2017. Fabrication and characterisation of soy protein isolate-grafted dextran biopolymer: A novel ingredient in spray-dried soy beverage formulation. International Journal of Biological Macromolecules, 102, 297-307.
[8] Ma, X., Chen, W., Yan, T., Wang, D., Hou, F., Miao, S., & Liu, D. 2020. Comparison of citrus pectin and apple pectin in conjugation with soy protein isolate (SPI) under controlled dry-heating conditions. Food Chemistry, 309, 125501.
[9] Ma, X., Hou, F., Zhao, H., Wang, D., Chen, W., Miao, S., & Liu, D. 2020. Conjugation of soy protein isolate (SPI) with pectin by ultrasound treatment. Food Hydrocolloids, 108, 106056.
[10] de Oliveira, F. C., Coimbra, J. S. d. R., de Oliveira, E. B., Zuñiga, A. D. G., & Rojas, E. E. G. 2016. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Critical Reviews in Food Science and Nutrition, 56(7), 1108-1125. doi:10.1080/10408398.2012.755669
[11] Davidov-Pardo, G., Pérez-Ciordia, S., Marı́n-Arroyo, M. R., & McClements, D. J. 2015. Improving resveratrol bioaccessibility using biopolymer nanoparticles and complexes: impact of protein–carbohydrate Maillard conjugation. Journal of agricultural and food chemistry, 63(15), 3915-3923.
[12] Nooshkam, M., & Varidi, M. 2021. Physicochemical stability and gastrointestinal fate of β-carotene-loaded oil-in-water emulsions stabilized by whey protein isolate-low acyl gellan gum conjugates. Food Chemistry, 347, 129079.
[13] Zhang, Z., Chen, W., Zhou, X., Deng, Q., Dong, X., Yang, C., & Huang, F. 2021. Astaxanthin-loaded emulsion gels stabilized by Maillard reaction products of whey protein and flaxseed gum: Physicochemical characterization and in vitro digestibility. Food Research International, 144, 110321.
[14] Su, J., Guo, Q., Chen, Y., Dong, W., Mao, L., Gao, Y., & Yuan, F. 2020. Characterization and formation mechanism of lutein pickering emulsion gels stabilized by β-lactoglobulin-gum arabic composite colloidal nanoparticles. Food Hydrocolloids, 98, 105276.
[15] Boye, J., Zare, F., & Pletch, A. 2010. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food research international, 43(2), 414-431.
[16] Kaur, M., & Singh, N. 2007. Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 102(1), 366-374.
[17] González, A. D., Frostell, B., & Carlsson-Kanyama, A. 2011. Protein efficiency per unit energy and per unit greenhouse gas emissions: potential contribution of diet choices to climate change mitigation. Food policy, 36(5), 562-570.
[18] Modgil, R., Tanwar, B., Goyal, A., & Kumar, V. 2021. Soybean (Glycine max). In Oilseeds: Health Attributes and Food Applications (pp. 1-46). Springer, Singapore.
[19] Molina, E., Papadopoulou, A., & Ledward, D. A. 2001. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocolloids, 15(3), 263-269.
[20] Tang, C. H. 2019. Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a review). Food Hydrocolloids, 91, 92-116.
[21] Tian, S., Chen, J. I. E., & Small, D. M. 2011. ENHANCEMENT OF SOLUBILITY AND EMULSIFYING PROPERTIES OF SOY PROTEIN ISOLATES BY GLUCOSE CONJUGATION. Journal of Food Processing and Preservation, 35(1), 80-95.
[22] Mozafarpour, R., Koocheki, A., Milani, E., & Varidi, M. 2019. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocolloids, 93, 361-373.
[23] Wang, Y., Zhang, A., Wang, X., Xu, N., & Jiang, L. 2020. The radiation assisted-Maillard reaction comprehensively improves the freeze-thaw stability of soy protein-stabilized oil-in-water emulsions. Food Hydrocolloids, 103, 105684
[24] Niu, F., Zhou, J., Niu, D., Wang, C., Liu, Y., Su, Y., & Yang, Y. 2015. Synergistic effects of ovalbumin/gum arabic complexes on the stability of emulsions exposed to environmental stress. Food Hydrocolloids, 47, 14-20.
[25] Nooshkam, M., Varidi, M., & Verma, D. K. 2020. Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review. Food Research International, 131, 109003.
[26] Bradbeer, J. F., Hancocks, R., Spyropoulos, F., & Norton, I. T. 2014. Self-structuring foods based on acid-sensitive low and high acyl mixed gellan systems to impact on satiety. Food Hydrocolloids, 35, 522-530.
[27] Vilela, J. A. P., & da Cunha, R. L. 2016. High acyl gellan as an emulsion stabilizer. Carbohydrate polymers, 139, 115-124.
[28] Morris, E. R., Nishinari, K., & Rinaudo, M. 2012. Gelation of gellan–a review. Food Hydrocolloids, 28(2), 373-411.
[29] Nooshkam, M., & Varidi, M. 2020. Whey protein isolate-low acyl gellan gum Maillard-based conjugates with tailored technological functionality and antioxidant activity. International Dairy Journal, 109, 104783.
[30] Guan, J. J., Zhang, T. B., Hui, M., Yin, H. C., Qiu, A. Y., & Liu, X. Y. 2011. Mechanism of microwave-accelerated soy protein isolate–saccharide graft reactions. Food Research International, 44(9), 2647-2654.
[31] Nooshkam, M., & Madadlou, A. 2016. Maillard conjugation of lactulose with potentially bioactive peptides. Food Chemistry, 192, 831-836.
[32] Alfred, R., Fun, T. S., Tahir, A., On, C. K., & Anthony, P. 2014. Concepts labeling of document clusters using a hierarchical agglomerative clustering (hac) technique. In The 8th International Conference on Knowledge Management in Organizations (pp. 263-272). Springer, Dordrecht.
[33] Nasrollahzadeh, F., Varidi, M., Koocheki, A., & Hadizadeh, F. 2017. Effect of microwave and conventional heating on structural, functional and antioxidant properties of bovine serum albumin-maltodextrin conjugates through Maillard reaction. Food Research International, 100, 289-297.
[34] Pearce, K. N., & Kinsella, J. E. 1978. Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26(3), 716-723. doi:10.1021/jf60217a041
[35] Chen, W., Liang, G., Li, X., He, Z., Zeng, M., Gao, D., ... & Chen, J. 2019. Impact of soy proteins, hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability. Colloids and Surfaces B: Biointerfaces, 177, 550-558.
[36] Zhou, Y., Teng, F., Tian, T., Sami, R., Wu, C., Zhu, Y., ... & Li, Y. 2020. The impact of soy protein isolate-dextran conjugation on capsicum oleoresin (Capsicum annuum L.) nanoemulsions. Food Hydrocolloids, 108, 105818.
[37] Setiowati, A. D., Saeedi, S., Wijaya, W., & Van der Meeren, P. 2017. Improved heat stability of whey protein isolate stabilized emulsions via dry heat treatment of WPI and low methoxyl pectin: Effect of pectin concentration, pH, and ionic strength. Food Hydrocolloids, 63, 716-726.
[38] Kim, J. S. 2013. Antioxidant activity of Maillard reaction products derived from aqueous and ethanolic glucose-glycine and its oligomer solutions. Food Science and Biotechnology, 22(1), 39-46.
[39] Ajandouz, E. H., Tchiakpe, L. S., Ore, F. D., Benajiba, A., & Puigserver, A. 2001. Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems. Journal of Food Science, 66(7), 926-931.
[40] Lertittikul, W., Benjakul, S., & Tanaka, M. 2007. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH. Food Chemistry, 100(2), 669-677.
[41] Jiang, Z., & Brodkorb, A. 2012. Structure and antioxidant activity of Maillard reaction products from α-lactalbumin and β-lactoglobulin with ribose in an aqueous model system. Food Chemistry, 133(3), 960-968.
[42] O'Brien, J., Morrissey, P. A., & Ames, J. M. 1989. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Critical Reviews in Food Science & Nutrition, 28(3), 211-248.
[43] Yáñez, D. A. C., Gagneten, M., Leiva, G. E., & Malec, L. S. 2018. Antioxidant activity developed at the different stages of Maillard reaction with milk proteins. LWT, 89, 344-349.
[44] Guan, J. J., Qiu, A. Y., Liu, X. Y., Hua, Y. F., & Ma, Y. H. 2006. Microwave improvement of soy protein isolate–saccharide graft reactions. Food chemistry, 97(4), 577-585.
[45] Nooshkam, M., Falah, F., Zareie, Z., Tabatabaei Yazdi, F., Shahidi, F., & Mortazavi, S. A. 2019. Antioxidant potential and antimicrobial activity of chitosan–inulin conjugates obtained through the Maillard reaction. Food Science and Biotechnology, 28(6), 1861-1869.
[46] Nooshkam, M., Varidi, M., & Bashash, M. 2019. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food chemistry, 275, 644-660.
[47] Consoli, L., Dias, R. A. O., Rabelo, R. S., Furtado, G. F., Sussulini, A., Cunha, R. L., & Hubinger, M. D. 2018. Sodium caseinate-corn starch hydrolysates conjugates obtained through the Maillard reaction as stabilizing agents in resveratrol-loaded emulsions. Food Hydrocolloids, 84, 458-472.
[48] Wen, C., Zhang, J., Qin, W., Gu, J., Zhang, H., Duan, Y., & Ma, H. 2020. Structure and functional properties of soy protein isolate-lentinan conjugates obtained in Maillard reaction by slit divergent ultrasonic assisted wet heating and the stability of oil-in-water emulsions. Food Chemistry, 331, 127374.
[49] Sun, T., Xu, H., Zhang, H., Ding, H., Cui, S., Xie, J., . . . Hua, X. 2018. Maillard reaction of oat β-glucan and the rheological property of its amino acid/peptide conjugates. Food Hydrocolloids, 76, 30-34.
[50] Álvarez, C., García, V., Rendueles, M., & Díaz, M. 2012. Functional properties of isolated porcine blood proteins modified by Maillard’s reaction. Food Hydrocolloids, 28(2), 267-274.
[51] Xi, C., Kang, N., Zhao, C., Liu, Y., Sun, Z., & Zhang, T. 2020. Effects of pH and different sugars on the structures and emulsification properties of whey protein isolate-sugar conjugates. Food Bioscience, 33, 100507.
[52] Zhu, Q., Gao, J., Han, L., Han, K., Wei, W., Wu, T., . . . Zhang, M. 2021. Development and characterization of novel bigels based on monoglyceride-beeswax oleogel and high acyl gellan gum hydrogel for lycopene delivery. Food Chemistry, 365, 130419.
[53] Li, R., Cui, Q., Wang, G., Liu, J., Chen, S., Wang, X., . . . Jiang, L. 2019. Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugates. Food Hydrocolloids, 95, 349-357.
[54] Li, R., Wang, X., Liu, J., Cui, Q., Wang, X., Chen, S., & Jiang, L. 2019. Relationship between Molecular Flexibility and Emulsifying Properties of Soy Protein Isolate-Glucose Conjugates. Journal of Agricultural and Food Chemistry, 67(14), 4089-4097.
[55] Ai, M., Xiao, N., & Jiang, A. 2021. Molecular structural modification of duck egg white protein conjugates with monosaccharides for improving emulsifying capacity. Food Hydrocolloids, 111, 106271.
[56] Wang, C., Li, J., Li, X., Chang, C., Zhang, M., Gu, L., . . . Yang, Y. 2019. Emulsifying properties of glycation or glycation-heat modified egg white protein. Food Research International, 119, 227-235.
[57] Wang, Y., Gan, J., Li, Y., Nirasawa, S., & Cheng, Y. 2019. Conformation and emulsifying properties of deamidated wheat gluten-maltodextrin/citrus pectin conjugates and their abilities to stabilize β-carotene emulsions. Food Hydrocolloids, 87, 129-141.
[58] Mu, L., Zhao, H., Zhao, M., Cui, C., & Liu, L. 2011. Physicochemical properties of soy protein isolates-acacia gum conjugates. Czech Journal of Food Sciences, 29(2), 129-136.
[59] Diftis, N., & Kiosseoglou, V. 2003. Improvement of emulsifying properties of soybean protein isolate by conjugation with carboxymethyl cellulose. Food Chemistry, 81(1), 1-6.
[60] O'Mahony, J. A., Drapala, K. P., Mulcahy, E. M., & Mulvihill, D. M. 2017. Controlled glycation of milk proteins and peptides: Functional properties. International Dairy Journal, 67, 16-34.
[61] Le, T. T., Holland, J. W., Bhandari, B., Alewood, P. F., & Deeth, H. C. 2013. Direct evidence for the role of Maillard reaction products in protein cross-linking in milk powder during storage. International Dairy Journal, 31(2), 83-91.
[62] Caballero, S., & Davidov-Pardo, G. 2021. Comparison of legume and dairy proteins for the impact of Maillard conjugation on nanoemulsion formation, stability, and lutein color retention. Food Chemistry, 338, 128083.
[63] Mu, L., Zhao, H., Zhao, M., Cui, C., & Liu, L. 2011. Physicochemical properties of soy protein isolates-acacia gum conjugates. Czech Journal of Food Sciences, 29(2), 129-136.
[64] Syll, O., Khalloufi, S., Méjean, S., & Schuck, P. 2016. The effects of total protein/total solid ratio and pH on the spray drying process and rehydration properties of soy powder. Powder Technology, 289, 60-64.
[65] Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H., & Ghorbel, D. 2016. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 194, 1056-1063.
[66] Ishii, T., Matsumiya, K., Aoshima, M., & Matsumura, Y. 2018. Microgelation imparts emulsifying ability to surface-inactive polysaccharides—bottom-up vs top-down approaches. npj Science of Food, 2(1), 15.
[67] Fasolin, L. H., Picone, C. S. F., Santana, R. C., & Cunha, R. L. 2013. Production of hybrid gels from polysorbate and gellan gum. Food Research International, 54(1), 501-507.
[68] Jiang, Y., Zhang, C., Yuan, J., Wu, Y., Li, F., I. N. Waterhouse, G., . . . Huang, Q. 2021. Exploiting the robust network structure of zein/low-acyl gellan gum nanocomplexes to create Pickering emulsion gels with favorable properties. Food Chemistry, 349, 129112.
[69] Cai, B., & Ikeda, S. 2016. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface. Journal of Dairy Science, 99(8), 6026-6035.
[70] Ullah, S. F., Khan, N. M., Ali, F., Ahmad, S., Khan, Z. U., Rehman, N., ... & Muhammad, N. 2019. Effects of Maillard reaction on physicochemical and functional properties of walnut protein isolate. Food science and biotechnology, 28(5), 1391-1399.
[71] Ping-Ping, W., Wen-Duo, W., Chun, C., Xiong, F., & Rui-Hai, L. 2020. Effect of Fructus Mori. bioactive polysaccharide conjugation on improving functional and antioxidant activity of whey protein. International journal of biological macromolecules, 148, 761-767.
[72] Makri, E. A., & Doxastakis, G. I. 2006. Study of emulsions and foams stabilized with Phaseolus vulgaris or Phaseolus coccineus with the addition of xanthan gum or NaCl. Journal of the Science of Food and Agriculture, 86(12), 1863-1870.
[73] Zhao, Q., Long, Z., Kong, J., Liu, T., Sun-Waterhouse, D., & Zhao, M. 2015. Sodium caseinate/flaxseed gum interactions at oil–water interface: Effect on protein adsorption and functions in oil-in-water emulsion. Food Hydrocolloids, 43, 137-145.
[74] Diah Setiowati, A., Rwigamba, A., & Van der Meeren, P. 2019. The influence of degree of methoxylation on the emulsifying and heat stabilizing activity of whey protein-pectin conjugates. Food Hydrocolloids, 96, 54-64.
[75] McClements, D. J. 2015. Food emulsions: principles, practices, and techniques. CRC press.
[76] Zha, F., Dong, S., Rao, J., & Chen, B. 2019. Pea protein isolate-gum Arabic Maillard conjugates improves physical and oxidative stability of oil-in-water emulsions. Food Chemistry, 285, 130-138.
[77] Xu, C.-h., Yang, X.-q., Yu, S.-j., Qi, J.-r., Guo, R., Sun, W.-W., . . . Zhao, M.-M. 2010. The effect of glycosylation with dextran chains of differing lengths on the thermal aggregation of β-conglycinin and glycinin. Food Research International, 43(9), 2270-2276.