[1] Kutzli, I., Weiss, J., & Gibis, M. 2021. Glycation of Plant Proteins Via Maillard Reaction: Reaction Chemistry, Technofunctional Properties, and Potential Food Application. Foods, 10(2). doi:10.3390/foods10020376.
[2] Mu, L., ZHao, H., ZHao, M., Cui, C., & Liu, L. 2011. Physicochemical properties of soy protein isolates-acacia gum conjugates. Czech Journal of Food Sciences, 29(2), 129-136.
[3] O’Regan, J., & Mulvihill, D. M. 2010. Heat stability and freeze–thaw stability of oil-in-water emulsions stabilised by sodium caseinate–maltodextrin conjugates. Food Chemistry, 119(1), 182-190.
[4] Liu, G., & Zhong, Q. 2012. Glycation of whey protein to provide steric hindrance against thermal aggregation. Journal of Agricultural and Food Chemistry, 60(38), 9754-9762.
[5] Wen, C., Zhang, J., Qin, W., Gu, J., Zhang, H., Duan, Y., & Ma, H. 2020. Structure and functional properties of soy protein isolate-lentinan conjugates obtained in Maillard reaction by slit divergent ultrasonic assisted wet heating and the stability of oil-in-water emulsions. Food Chemistry, 331, 127374.
[6] Naik, R. R., Wang, Y., & Selomulya, C. 2021. Improvements of plant protein functionalities by Maillard conjugation and Maillard reaction products. Critical Reviews in Food Science and Nutrition, 1-26. doi:10.1080/10408398.2021.1910139
[7] Boostani, S., Aminlari, M., Moosavi-nasab, M., Niakosari, M., & Mesbahi, G. 2017. Fabrication and characterisation of soy protein isolate-grafted dextran biopolymer: A novel ingredient in spray-dried soy beverage formulation. International Journal of Biological Macromolecules, 102, 297-307.
[8] Ma, X., Chen, W., Yan, T., Wang, D., Hou, F., Miao, S., & Liu, D. 2020. Comparison of citrus pectin and apple pectin in conjugation with soy protein isolate (SPI) under controlled dry-heating conditions. Food Chemistry, 309, 125501.
[9] Ma, X., Hou, F., Zhao, H., Wang, D., Chen, W., Miao, S., & Liu, D. 2020. Conjugation of soy protein isolate (SPI) with pectin by ultrasound treatment. Food Hydrocolloids, 108, 106056.
[10] de Oliveira, F. C., Coimbra, J. S. d. R., de Oliveira, E. B., Zuñiga, A. D. G., & Rojas, E. E. G. 2016. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Critical Reviews in Food Science and Nutrition, 56(7), 1108-1125. doi:10.1080/10408398.2012.755669
[11] Davidov-Pardo, G., Pérez-Ciordia, S., Marı́n-Arroyo, M. R., & McClements, D. J. 2015. Improving resveratrol bioaccessibility using biopolymer nanoparticles and complexes: impact of protein–carbohydrate Maillard conjugation. Journal of agricultural and food chemistry, 63(15), 3915-3923.
[12] Nooshkam, M., & Varidi, M. 2021. Physicochemical stability and gastrointestinal fate of β-carotene-loaded oil-in-water emulsions stabilized by whey protein isolate-low acyl gellan gum conjugates. Food Chemistry, 347, 129079.
[13] Zhang, Z., Chen, W., Zhou, X., Deng, Q., Dong, X., Yang, C., & Huang, F. 2021. Astaxanthin-loaded emulsion gels stabilized by Maillard reaction products of whey protein and flaxseed gum: Physicochemical characterization and in vitro digestibility. Food Research International, 144, 110321.
[14] Su, J., Guo, Q., Chen, Y., Dong, W., Mao, L., Gao, Y., & Yuan, F. 2020. Characterization and formation mechanism of lutein pickering emulsion gels stabilized by β-lactoglobulin-gum arabic composite colloidal nanoparticles. Food Hydrocolloids, 98, 105276.
[15] Boye, J., Zare, F., & Pletch, A. 2010. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food research international, 43(2), 414-431.
[16] Kaur, M., & Singh, N. 2007. Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 102(1), 366-374.
[17] González, A. D., Frostell, B., & Carlsson-Kanyama, A. 2011. Protein efficiency per unit energy and per unit greenhouse gas emissions: potential contribution of diet choices to climate change mitigation. Food policy, 36(5), 562-570.
[18] Modgil, R., Tanwar, B., Goyal, A., & Kumar, V. 2021. Soybean (Glycine max). In Oilseeds: Health Attributes and Food Applications (pp. 1-46). Springer, Singapore.
[19] Molina, E., Papadopoulou, A., & Ledward, D. A. 2001. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocolloids, 15(3), 263-269.
[20] Tang, C. H. 2019. Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a review). Food Hydrocolloids, 91, 92-116.
[21] Tian, S., Chen, J. I. E., & Small, D. M. 2011. ENHANCEMENT OF SOLUBILITY AND EMULSIFYING PROPERTIES OF SOY PROTEIN ISOLATES BY GLUCOSE CONJUGATION. Journal of Food Processing and Preservation, 35(1), 80-95.
[22] Mozafarpour, R., Koocheki, A., Milani, E., & Varidi, M. 2019. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocolloids, 93, 361-373.
[23] Wang, Y., Zhang, A., Wang, X., Xu, N., & Jiang, L. 2020. The radiation assisted-Maillard reaction comprehensively improves the freeze-thaw stability of soy protein-stabilized oil-in-water emulsions. Food Hydrocolloids, 103, 105684
[24] Niu, F., Zhou, J., Niu, D., Wang, C., Liu, Y., Su, Y., & Yang, Y. 2015. Synergistic effects of ovalbumin/gum arabic complexes on the stability of emulsions exposed to environmental stress. Food Hydrocolloids, 47, 14-20.
[25] Nooshkam, M., Varidi, M., & Verma, D. K. 2020. Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review. Food Research International, 131, 109003.
[26] Bradbeer, J. F., Hancocks, R., Spyropoulos, F., & Norton, I. T. 2014. Self-structuring foods based on acid-sensitive low and high acyl mixed gellan systems to impact on satiety. Food Hydrocolloids, 35, 522-530.
[27] Vilela, J. A. P., & da Cunha, R. L. 2016. High acyl gellan as an emulsion stabilizer. Carbohydrate polymers, 139, 115-124.
[28] Morris, E. R., Nishinari, K., & Rinaudo, M. 2012. Gelation of gellan–a review. Food Hydrocolloids, 28(2), 373-411.
[29] Nooshkam, M., & Varidi, M. 2020. Whey protein isolate-low acyl gellan gum Maillard-based conjugates with tailored technological functionality and antioxidant activity. International Dairy Journal, 109, 104783.
[30] Guan, J. J., Zhang, T. B., Hui, M., Yin, H. C., Qiu, A. Y., & Liu, X. Y. 2011. Mechanism of microwave-accelerated soy protein isolate–saccharide graft reactions. Food Research International, 44(9), 2647-2654.
[31] Nooshkam, M., & Madadlou, A. 2016. Maillard conjugation of lactulose with potentially bioactive peptides. Food Chemistry, 192, 831-836.
[32] Alfred, R., Fun, T. S., Tahir, A., On, C. K., & Anthony, P. 2014. Concepts labeling of document clusters using a hierarchical agglomerative clustering (hac) technique. In The 8th International Conference on Knowledge Management in Organizations (pp. 263-272). Springer, Dordrecht.
[33] Nasrollahzadeh, F., Varidi, M., Koocheki, A., & Hadizadeh, F. 2017. Effect of microwave and conventional heating on structural, functional and antioxidant properties of bovine serum albumin-maltodextrin conjugates through Maillard reaction. Food Research International, 100, 289-297.
[34] Pearce, K. N., & Kinsella, J. E. 1978. Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26(3), 716-723. doi:10.1021/jf60217a041
[35] Chen, W., Liang, G., Li, X., He, Z., Zeng, M., Gao, D., ... & Chen, J. 2019. Impact of soy proteins, hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability. Colloids and Surfaces B: Biointerfaces, 177, 550-558.
[36] Zhou, Y., Teng, F., Tian, T., Sami, R., Wu, C., Zhu, Y., ... & Li, Y. 2020. The impact of soy protein isolate-dextran conjugation on capsicum oleoresin (Capsicum annuum L.) nanoemulsions. Food Hydrocolloids, 108, 105818.
[37] Setiowati, A. D., Saeedi, S., Wijaya, W., & Van der Meeren, P. 2017. Improved heat stability of whey protein isolate stabilized emulsions via dry heat treatment of WPI and low methoxyl pectin: Effect of pectin concentration, pH, and ionic strength. Food Hydrocolloids, 63, 716-726.
[38] Kim, J. S. 2013. Antioxidant activity of Maillard reaction products derived from aqueous and ethanolic glucose-glycine and its oligomer solutions. Food Science and Biotechnology, 22(1), 39-46.
[39] Ajandouz, E. H., Tchiakpe, L. S., Ore, F. D., Benajiba, A., & Puigserver, A. 2001. Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems. Journal of Food Science, 66(7), 926-931.
[40] Lertittikul, W., Benjakul, S., & Tanaka, M. 2007. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH. Food Chemistry, 100(2), 669-677.
[41] Jiang, Z., & Brodkorb, A. 2012. Structure and antioxidant activity of Maillard reaction products from α-lactalbumin and β-lactoglobulin with ribose in an aqueous model system. Food Chemistry, 133(3), 960-968.
[42] O'Brien, J., Morrissey, P. A., & Ames, J. M. 1989. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Critical Reviews in Food Science & Nutrition, 28(3), 211-248.
[43] Yáñez, D. A. C., Gagneten, M., Leiva, G. E., & Malec, L. S. 2018. Antioxidant activity developed at the different stages of Maillard reaction with milk proteins. LWT, 89, 344-349.
[44] Guan, J. J., Qiu, A. Y., Liu, X. Y., Hua, Y. F., & Ma, Y. H. 2006. Microwave improvement of soy protein isolate–saccharide graft reactions. Food chemistry, 97(4), 577-585.
[45] Nooshkam, M., Falah, F., Zareie, Z., Tabatabaei Yazdi, F., Shahidi, F., & Mortazavi, S. A. 2019. Antioxidant potential and antimicrobial activity of chitosan–inulin conjugates obtained through the Maillard reaction. Food Science and Biotechnology, 28(6), 1861-1869.
[46] Nooshkam, M., Varidi, M., & Bashash, M. 2019. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food chemistry, 275, 644-660.
[47] Consoli, L., Dias, R. A. O., Rabelo, R. S., Furtado, G. F., Sussulini, A., Cunha, R. L., & Hubinger, M. D. 2018. Sodium caseinate-corn starch hydrolysates conjugates obtained through the Maillard reaction as stabilizing agents in resveratrol-loaded emulsions. Food Hydrocolloids, 84, 458-472.
[48] Wen, C., Zhang, J., Qin, W., Gu, J., Zhang, H., Duan, Y., & Ma, H. 2020. Structure and functional properties of soy protein isolate-lentinan conjugates obtained in Maillard reaction by slit divergent ultrasonic assisted wet heating and the stability of oil-in-water emulsions. Food Chemistry, 331, 127374.
[49] Sun, T., Xu, H., Zhang, H., Ding, H., Cui, S., Xie, J., . . . Hua, X. 2018. Maillard reaction of oat β-glucan and the rheological property of its amino acid/peptide conjugates. Food Hydrocolloids, 76, 30-34.
[50] Álvarez, C., García, V., Rendueles, M., & Díaz, M. 2012. Functional properties of isolated porcine blood proteins modified by Maillard’s reaction. Food Hydrocolloids, 28(2), 267-274.
[51] Xi, C., Kang, N., Zhao, C., Liu, Y., Sun, Z., & Zhang, T. 2020. Effects of pH and different sugars on the structures and emulsification properties of whey protein isolate-sugar conjugates. Food Bioscience, 33, 100507.
[52] Zhu, Q., Gao, J., Han, L., Han, K., Wei, W., Wu, T., . . . Zhang, M. 2021. Development and characterization of novel bigels based on monoglyceride-beeswax oleogel and high acyl gellan gum hydrogel for lycopene delivery. Food Chemistry, 365, 130419.
[53] Li, R., Cui, Q., Wang, G., Liu, J., Chen, S., Wang, X., . . . Jiang, L. 2019. Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugates. Food Hydrocolloids, 95, 349-357.
[54] Li, R., Wang, X., Liu, J., Cui, Q., Wang, X., Chen, S., & Jiang, L. 2019. Relationship between Molecular Flexibility and Emulsifying Properties of Soy Protein Isolate-Glucose Conjugates. Journal of Agricultural and Food Chemistry, 67(14), 4089-4097.
[55] Ai, M., Xiao, N., & Jiang, A. 2021. Molecular structural modification of duck egg white protein conjugates with monosaccharides for improving emulsifying capacity. Food Hydrocolloids, 111, 106271.
[56] Wang, C., Li, J., Li, X., Chang, C., Zhang, M., Gu, L., . . . Yang, Y. 2019. Emulsifying properties of glycation or glycation-heat modified egg white protein. Food Research International, 119, 227-235.
[57] Wang, Y., Gan, J., Li, Y., Nirasawa, S., & Cheng, Y. 2019. Conformation and emulsifying properties of deamidated wheat gluten-maltodextrin/citrus pectin conjugates and their abilities to stabilize β-carotene emulsions. Food Hydrocolloids, 87, 129-141.
[58] Mu, L., Zhao, H., Zhao, M., Cui, C., & Liu, L. 2011. Physicochemical properties of soy protein isolates-acacia gum conjugates. Czech Journal of Food Sciences, 29(2), 129-136.
[59] Diftis, N., & Kiosseoglou, V. 2003. Improvement of emulsifying properties of soybean protein isolate by conjugation with carboxymethyl cellulose. Food Chemistry, 81(1), 1-6.
[60] O'Mahony, J. A., Drapala, K. P., Mulcahy, E. M., & Mulvihill, D. M. 2017. Controlled glycation of milk proteins and peptides: Functional properties. International Dairy Journal, 67, 16-34.
[61] Le, T. T., Holland, J. W., Bhandari, B., Alewood, P. F., & Deeth, H. C. 2013. Direct evidence for the role of Maillard reaction products in protein cross-linking in milk powder during storage. International Dairy Journal, 31(2), 83-91.
[62] Caballero, S., & Davidov-Pardo, G. 2021. Comparison of legume and dairy proteins for the impact of Maillard conjugation on nanoemulsion formation, stability, and lutein color retention. Food Chemistry, 338, 128083.
[63] Mu, L., Zhao, H., Zhao, M., Cui, C., & Liu, L. 2011. Physicochemical properties of soy protein isolates-acacia gum conjugates. Czech Journal of Food Sciences, 29(2), 129-136.
[64] Syll, O., Khalloufi, S., Méjean, S., & Schuck, P. 2016. The effects of total protein/total solid ratio and pH on the spray drying process and rehydration properties of soy powder. Powder Technology, 289, 60-64.
[65] Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H., & Ghorbel, D. 2016. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 194, 1056-1063.
[66] Ishii, T., Matsumiya, K., Aoshima, M., & Matsumura, Y. 2018. Microgelation imparts emulsifying ability to surface-inactive polysaccharides—bottom-up vs top-down approaches. npj Science of Food, 2(1), 15.
[67] Fasolin, L. H., Picone, C. S. F., Santana, R. C., & Cunha, R. L. 2013. Production of hybrid gels from polysorbate and gellan gum. Food Research International, 54(1), 501-507.
[68] Jiang, Y., Zhang, C., Yuan, J., Wu, Y., Li, F., I. N. Waterhouse, G., . . . Huang, Q. 2021. Exploiting the robust network structure of zein/low-acyl gellan gum nanocomplexes to create Pickering emulsion gels with favorable properties. Food Chemistry, 349, 129112.
[69] Cai, B., & Ikeda, S. 2016. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface. Journal of Dairy Science, 99(8), 6026-6035.
[70] Ullah, S. F., Khan, N. M., Ali, F., Ahmad, S., Khan, Z. U., Rehman, N., ... & Muhammad, N. 2019. Effects of Maillard reaction on physicochemical and functional properties of walnut protein isolate. Food science and biotechnology, 28(5), 1391-1399.
[71] Ping-Ping, W., Wen-Duo, W., Chun, C., Xiong, F., & Rui-Hai, L. 2020. Effect of Fructus Mori. bioactive polysaccharide conjugation on improving functional and antioxidant activity of whey protein. International journal of biological macromolecules, 148, 761-767.
[72] Makri, E. A., & Doxastakis, G. I. 2006. Study of emulsions and foams stabilized with Phaseolus vulgaris or Phaseolus coccineus with the addition of xanthan gum or NaCl. Journal of the Science of Food and Agriculture, 86(12), 1863-1870.
[73] Zhao, Q., Long, Z., Kong, J., Liu, T., Sun-Waterhouse, D., & Zhao, M. 2015. Sodium caseinate/flaxseed gum interactions at oil–water interface: Effect on protein adsorption and functions in oil-in-water emulsion. Food Hydrocolloids, 43, 137-145.
[74] Diah Setiowati, A., Rwigamba, A., & Van der Meeren, P. 2019. The influence of degree of methoxylation on the emulsifying and heat stabilizing activity of whey protein-pectin conjugates. Food Hydrocolloids, 96, 54-64.
[75] McClements, D. J. 2015. Food emulsions: principles, practices, and techniques. CRC press.
[76] Zha, F., Dong, S., Rao, J., & Chen, B. 2019. Pea protein isolate-gum Arabic Maillard conjugates improves physical and oxidative stability of oil-in-water emulsions. Food Chemistry, 285, 130-138.
[77] Xu, C.-h., Yang, X.-q., Yu, S.-j., Qi, J.-r., Guo, R., Sun, W.-W., . . . Zhao, M.-M. 2010. The effect of glycosylation with dextran chains of differing lengths on the thermal aggregation of β-conglycinin and glycinin. Food Research International, 43(9), 2270-2276.