تولید و ارزیابی ویژگی‌های امولسیون‌های دوگانه تثبیت شده توسط هیدروکسی پروپیل متیل سلولز

نویسندگان
1 دانش آموخته کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران.
2 استادیار گروه مهندسی ‌علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران.
3 استادیار گروه مهندسی ‌علوم و صنایع غذایی، دانشکده فنی و منابع طبیعی تویسرکان، دانشگاه بوعلی سینا، همدان، ایران.
چکیده
هدف از این مطالعه، تولید امولسیون‌های دوگانه پایدار شده توسط هیدروکسی پروپیل متیل سلولز و مقایسه ویژگی‌های فیزیکوشیمیایی آن با امولسیون‌های دوگانه پایدار شده توسط امولسیفایر توئین 80 بود. امولسیون‌های دوگانه با استفاده از روش دو مرحله‌ای تولید شدند. ابتدا یک امولسیون اولیه آب در روغن با افزودن 20 درصد از فاز آبی داخلی حاوی کلرید سدیم به فاز روغنی حاوی 95 درصد روغن آفتابگردان و 5 درصد پلی گلیسرول پلی رسینولئات و مخلوط کردن توسط همزن مغناطیسی تهیه شد. در دومین مرحله امولسیون­سازی، 40 درصد از امولسیون اولیه آب در روغن تولید شده در مرحله اول به 60 درصد از فاز آبی خارجی حاوی امولسیفایر هیدروکسی پروپیل متیل سلولز در سه سطح 2، 3 و 4 درصد، 1 درصد هیدروکسی پروپیل متیل سلولز و 1 درصد توئین 80 و 2 درصد توئین 80 به عنوان نمونه شاهد اضافه و توسط همزن مغناطیسی پراکنده شد. هر دو امولسیون تولید شده، با استفاده از هموژنایزر سرعت بالا به مدت 10 دقیقه با سرعت 15000 دور در دقیقه هموژن شدند. امولسیون‌های دوگانه تولید شده، از نظر اندازه و توزیع اندازه ذرات، پایداری، ویسکوزیته، رنگ و مورفولوژی بهینه­یابی شدند. نتایج نشان دادند که کم‌ترین اندازه ذرات مربوط به امولسیون‌ دوگانه تولید شده توسط توئین 80 بود که اندازه و توزیع ذرات آن به ترتیب 33/385 نانومتر و 31/0 بود. این پارامترها برای امولسیون‌های پایدار شده توسط 4 درصد هیدروکسی پروپیل متیل سلولز به ترتیب 97/453 نانومتر و 33/0 بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production and evaluation of double emulsions properties stabilized by hydroxypropyl methyl cellulose

نویسندگان English

Maryam Norouzi 1
Ashraf Gohari Ardabili 2
Amir Daraei Garmakhany 3
1 Graduated M.Sc. Student of Department of Food Science and Technology, Bahar Faculty of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
2 Assistant Professor of Department of Food Science and Technology, Bahar Faculty of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
3 Assistant Professor of Department of Food Science and Technology, College of Food Science and Technology of Toyserkan, Bu-Ali Sina University, Hamedan, Iran.
چکیده English

The aim of this study was the production of double emulsions stabilized by hydroxypropyl methylcellulose and comparison of physicochemical properties of these emulsions with double emulsions stabilized by Tween 80 emulsifier. Double emulsions were produced using the two-step method. Firstly, an initial water-in-oil (W/O) emulsion was prepared by adding 20% ​​of the internal aqueous phase containing sodium chloride to the oil phase containing 95% sunflower oil and 5% Polyglycerol polyricinoleate (PGPR) and mixing with a magnetic stirrer. In the second stage of emulsification, 40% of the initial water-in-oil (W/O) emulsion produced in the first stage was added to 60% of the external aqueous phase containing hydroxypropyl methyl cellulose emulsifier in three levels of 2, 3 and 4%, 1% hydroxypropyl methyl cellulose and 1% tween 80 and 2% tween 80 as control sample and dispersed by magnetic stirrer. Both the produced emulsions were homogenized using a high speed homogenizer for 15 minutes at 15000 rpm. The produced double emulsions were optimized in terms of particle size and distribution, stability, viscosity, color and morphology. The results showed that the lowest particle size was related to the double emulsions produced by Tween 80 which their particles size and distribution were 385.33 nm and 0.31, respectively. These parameters were 453.97 nm and 0.33, respectively for emulsions stabilized with 4% hydroxypropyl methyl cellulose.

کلیدواژه‌ها English

Double emulsion
hydroxypropyl methyl cellulose
particle size
Physicochemical properties
Stability
[1] Garti, N., & Bisperink, C. (1998). Double emulsions: progress and applications. Current Opinion in Colloid & Interface Science, 3(6), 657-667.
[2] Garti, N. (1997). Progress in stabilization and transport phenomena of double emulsions in food applications. LWT-Food Science and Technology, 30(3), 222 235.
[3] Grossiord, J., & Seiller, M. (2001). W/O/W multiple emulsions: a review of the release mechanisms by break-up of the oily membrane. STP pharma sciences, 11(5), 331-339.
[4] Dickinson, E. (2011). Double emulsions stabilized by food biopolymers. Food Biophysics, 6(1), 1-11.
[5] Assadpour, E., Maghsoudlou, Y., Jafari, S.M., Ghorbani, M., & Aalami, M. (2016). Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. International Journal of Biological Macromolecules, 86, 197-207.
[6] Huang, X., Kakuda, Y., and Cui, W. (2001). Hydrocolloids in emulsion: particle size distribution and interface activity. Food Hydrocolloids, 15, 533-542.
[7] Jafari, S.M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 22(7), 1191-1202.
[8] Saberi, A.H., Fang, Y., & McClements, D.J. (2013). Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. Journal of Colloid and Interface Science, 411(0), 105-113.
[9] Kang, J., Cui, S.W., Chen, J., Phillips, G.O., Wu, Y., Wang, Q. (2011). New studies on gum ghatti (Anogeissus latifolia) part I. Fractionation, chemical and physical characterization of the gum. Food hydrocolloids, 25(8), 1984-1990.
[10] Rao, J., & McClements, D.J. (2010). Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. Journal of Agricultural and Food Chemistry, 58(11), 7059-7066.
[11] Kulicke, M.W., Arendt, O., and Berger, M. (1998). Rheological characterization of the dilatant flow behavior of highly substituted hydroxypropyl methyl- cellulose solutions in the presence of sodium lauryl sulfate. Colloid Polymer Science, 276, 617-626.
[12] Lawrence, M.J. and G.D. Rees (2012). Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, 64, 175-193.
[13] Yang, Y.C., Li, J., Zu, Y.G., Fu, Y.J., Luo, M., Wu, N., & Liu, X.L. (2010). Optimisation of microwave-assisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne evaluation of antioxidant activity. Food Chemistry, 122(1), 373-380.
[14] Lutz, R., A. Aserin, et al. (2009). Release of electrolytes from W/O/W double emulsions stabilized by a soluble complex of modified pectin and whey protein isolate. Colloids and Surfaces B: Biointerfaces, 74(1), 178-185.
[15] Li, J., Shi, Y., Zhu, Y., Teng, C., & Li, X. (2016). Effects of several natural macromolecules on the stability and controlled release properties of water-in-oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 64(19), 3873-3880.
[16] Hemar, Y., Cheng, L., Oliver, C., Sanguansri, L., & Augustin, M. (2010). Encapsulation of Resveratrol Using Water-in-Oil-in-Water Double Emulsions. Food Biophysics, 5(2), 120-127.
[17] Cofrades, S., Antoniou, I., Solas, M.T., Herrero, A.M., & Jimenez-Colmenero, F. (2013). Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems. Food Chemistry, 141(1), 338-346.
[18] Bou, R., Cofrades, S., & Jiménez-Colmenero, F. (2014). Influence of high pressure and heating treatments on physical parameters of water-in-oil-in-water emulsions. Innovative Food Science & Emerging Technologies, 23, 1-9.
[19] Schmidt, U.S., Bernewitz, R., Guthausen, G., & Schuchmann, H.P. (2015). Investigation and application of measurement techniques for the determination of the encapsulation efficiency of O/W/O multiple emulsions stabilized by hydrocolloid gelation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 475, 55-61.
[20] McClements, D.J., & Rao, J. (2011). Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285-330.
[21] Bonnet, M., M. Cansell, et al. (2009). Release rate profiles of magnesium from multiple W/O/W emulsions. Food Hydrocolloids, 23(1), 92-101.
[22] McClements, D.J. (2002). Colloidal basis of emulsion color. Current Opinion in Colloid & Interface Science, 7(5–6), 451-455.
[23] Pal, R. (1996). Rheology of emulsion containing polymeric liquids, in Encyclopedia of Emulsion Technology, Vol. 4, Becher, P., ed., Marcel Dekker, New York, NY.
[24] Pettit, D.J., Waybe, J.E.B., Nantz, J.R., and Shoemaker, C.F. (1995). Rheological properties of solutions and emulsions stabilized with xanthan gum and propylene glycol alginate. Journal of Food Science, 60, 528-531.
[25] Liu, Y., Carter, E., Gordon, G., Feng, Q. and Friberg, S. (2012). An investigation into the relationship between catastrophic inversion and emulsion phase behaviors. Colloids and Surfaces A: Physicochemical Engineering Aspects, 399, 25– 34.
[26] Dickinson, E. (2001). Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Interfaces B, 20, 197–210.