مقایسه خواص عملکردی وفیزیکوشیمیایی نشاسته های کینوا گونه تی ‌تی‌کا کا و گندم گونه پیشگام

نویسندگان
1 گروه علوم صنایع غذایی و فناوری، واحد نجف آباد، دانشگاه آزاد اسلامی ، نجف اباد، ایران
2 گروه علوم صنایع غذایی ، دانشکده کشاورزی، دانشگاه تربیت مدرس تهران
3 گروه شیمی، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف اباد، ایران
4 گروه علوم صنایع غذایی و فناوری، واحد شهرضا، دانشگاه آزاد اسلامی، شهر رضا، ایران
چکیده
نشاسته مهم‌ترین کربوهیدرات ذخیره‌ای گیاهان است که به عنوان ماده اولیه در صنایع مختلف بویژه صنایع غذایی کاربردهای فراوانی دارد. هدف از انجام این پژوهش بررسی خواص عملکردی وفیزیکوشیمیای نشاسته‌های استخراج شده از کینوا تی‌تی‌کاکا و گندم پیشگام بود. بدین منظور درصد آمیلوز، پراکنش اشعه X ، میزان تورم، حلالیت، جذب آب، ویژگی‌های حرارتی، خصوصیات خمیری شدن و بافت ژل نشاسته‌های استخراج شده از گندم و کینوا بررسی شد. نتایج تصاویر میکروسکوپ الکترونی سایز گرانول های نشاسته گندم و کینوا را به ترتیب10-8 میکرومتر و 5-2 میکرومتر نشان داد. طبق نتایج به دست آمده، درصد آمیلوز نشاسته کینوا(83/0±19/9) از نشاسته گندم(66/0±57/19) کمتر و درصد بلورینگی آن بیشتر بود. میزان جذب آب در نشاسته کینوا به طور معنا داری ( 0/05>p) بیشتر از گندم بدست آمد. همچنین پارامترهای بررسی شده در اندازه‌گیری ویژگی‌های حرارتی نشاسته کینوا با اختلاف معنی داری بیشتر از نشاسته گندم ارزیابی شد. بررسی خصوصیات خمیری شدن نشان داد که دمای خمیری شدن نشاسته کینوا از گندم بیشتر و بیشینه ویسکوزیته، ویسکوزیته نهایی، بازگشت و شکست از گندم کم‌تر بود (05/0 >p). ویژگی‌های بافت ژل نشاسته کینوا به طور معناداری(05/0 >p) سفتی، صمغیت و فنریت را کم‌تر از گندم نشان داد. بنابراین می‌توان گفت خواص منحصر به فرد نشاسته کینوا استفاده از آن را در فرآورده‌های نانوایی مختلف و فرآورده‌هایی که در تولید آن‌ها نیروی مکانیکی زیادی استفاده می‌شود و همچنین غذاهای منجمد امکان پذیر می‌سازد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of functional and physicochemical properties of quinoa (cultivar TTKK) and wheat (cultivar Pishgam) starches

نویسندگان English

narges nadian 1
MohammadHossein Azizi 2
Hossein Abbastabar ahangar 3
Azam Arabi 4
1 Food science and Technology Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Food Science and Technology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran Iran
3 Chemistry Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran
4 Food Science and Technology Department, Shahreza Branch, Islamic Azad University, Shahreza, Iran
چکیده English

Starch is one of the important plant storage carbohydrates that has many applications as a raw material in different industries especially the food industry. In this study physicochemical properties of starches extracted from quinoa TTKK and wheat, Pishgam were investigated. Percentage of amylose, X-ray diffraction, swelling power, solubility, water, and oil absorptions, and thermal, pasting, and textural properties were measured. SEM images illustrated that wheat starch granules size were about 8-10 μm and quinoa starch granules size were about 2-5 μm. Results showed that the percentage of quinoa starch amylose (9.19 ± 0.83) was lower than wheat starch (19.57 ± 0.66) but crystallinity percentage was higher in quinoa starch(p<0.05). As well as water absorption. Regarding thermal properties, all the parameters were higher than wheat starch. Measurement of starch pasting properties demonstrated that quinoa starch had higher pasting temperature and lower peak, final, break down, and set back viscosity(p<0.05). Studies on textural properties showed that hardness, gumminess, and springiness were significantly lower in quinoa starch compared to wheat starch. Therefore, unique starch properties of quinoa make it possible to use it in various bakery products which a lot of mechanical forces are applied to produce. as well as frozen products.

کلیدواژه‌ها English

Functional properties
Quinoa starch
Wheat starch
1] Majzoobi, M., Radi, Mohsen., Farahnaki, Asgar., Jamalian, Jala., Mesbahi, Gholamreza. (2008). Effect of ascorbic acid on functional properties of wheat starch. Advances in Food and Nutrition Research, 58:1-31.
[2] Majzoobi, M., Sabery, B., Farahnaky, A., Karrila, T. T. (2012). Physicochemical properties of cross-linked-annealed wheat starch. Iranian Polymer Journal, 21:513-22.
[3] Tester, R. F., Karkalas, J., Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39:151-65.
[4] Barnett, K., Harder, S. (2014). Remedies in Australian private law: Cambridge University Press; 2014.
[5] Iqbal, M. A. (2015). An assessment of quinoa (Chenopodium quinoa Willd.) potential as a grain crop on marginal lands in Pakistan. American-Eurasian Journal of Agricultural and Environmental Sciences, 15:16-23.
[6] James, L. E. A. (2009). Quinoa (Z quinoa Willd.): Composition, chemistry, nutritional, and functional properts. Advances in Food and Nutrition Research, 58:1-31.
[7] Bhargava, A., Shukla S., Ohri D. (2007). Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Research, 101:104-16.
[8] Jacobsen, S.-E. (2003).The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19:167-77.
[9] Atef, A., Abou-Zaid, I., Wafaa, S., Emam, H. (2014). Use of quinoa meal to produce bakery products to celiac and autism stuffs. International Journal of Science Research, 3:1344-54.
[10] Wright, K., Huber, K., Fairbanks, D. J., Huber C. (2002) .Isolation and characterization of Atriplex hortensis and sweet Chenopodium quinoa starches. Cereal Chemistry, 79:715-9.
[11] Morrison, W. R., Laignelet, B. (1983) .An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. Journal of Cereal Science, 1:9-20.
[12] Leach, H. W. (1959). Structure of starch granules. I. Swelling and solubility patterns of various starches. Cereal Chemistry, 36:534-44.
[13] Steffolani, M. E., León, A. E., Pérez, G. T. (2013). Study of the physicochemical and functional characterization of quinoa and kañiwa starches. Starch‐Stärke, 65:976-83.
[14] Ratnayake, W. S., Jackson, D. S. (2008). Starch gelatinization. Advances in Food and Nutrition Research, 55:221-68.
[15] Li, G., Wang, S., Zhu, F. (2016). Physicochemical properties of quinoa starch. Carbohydrate Polymers, 137:328-38.
[16] Bao, J., Xia, Y. (2001). Genetic effects and genotype× environment interactions for the starch RVA profiles in indica rice. Scientia Agricultura Sinica, 2:123-7.
[17] Lindeboom, N., Chang, P. R., Falk, K. C., Tyler, R. T. (2005). Characteristics of starch from eight quinoa lines. Cereal Chemistry, 82:216-22.
[18] Li, G., Zhu, F. (2018). Effect of high pressure on rheological and thermal properties of quinoa and maize starches. Food Chemistry, 241:380-6.
[19] Wang, S., Opassathavorn A., Zhu F. (2015). Influence of Quinoa Flour on Quality Characteristics of Cookie, Bread and C hinese Steamed Bread. Journal of Texture Studies, 46:281-92.
[20] Ahamed, N. T., Singhal, R. S., Kulkarni, P. R., Pal, M. (1996). Physicochemical and functional properties of Chenopodium quinoa starch. Carbohydrate Polymers, 31:99-103.
[21] Jiang, F., Du, C., Guo, Y., Fu J., Jiang, W., Du, S.-K. (2020). Physicochemical and structural properties of starches isolated from quinoa varieties. Food Hydrocolloids, 101:105515.
[22] Jan, K. N., Panesar, P., Rana, J., Singh, S. (2017). Structural, thermal and rheological properties of starches isolated from Indian quinoa varieties. International Journal of Biological Macromolecules,102:315-22.
[23] Sandhu, K. S., Singh, N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101:1499-507.
[24] Matos, M., Timgren, A., Sjöö, M., Dejmek, P., Rayner, M. (2013). Preparation and encapsulation properties of double Pickering emulsions stabilized by quinoa starch granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 423:147-53.
[25] Wolter, A., Hager, A.-S., Zannini, E., Czerny, M., Arendt, E. K. (2014). Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads. International Journal of Food Microbiology, 172:83-91.
[26] Srichuwong, S., Jane J.-I. (2007). Physicochemical properties of starch affected by molecular composition and structures: a review. Food Science and Biotechnology, 16:663-74.
[27] Wu, G. (2016). Quinoa seed quality and sensory evaluation: Washington State University.
[28] Ruales, J., Grijalva,Y. D., Lopez-Jaramillo P., Nair B. M. (2002). The nutritional quality of an infant food from quinoa and its effect on the plasma level of insulin-like growth factor-1 (IGF-1) in undernourished children. International Journal of Food Sciences and Nutrition, 53:143-54.
[29] Gani, A., Wani, S. M., Masoodi, F., Salim, R. (2013). Characterization of rice starches extracted from Indian cultivars. Food Science and Technology International, 19:143-52.
[30] Steffolani, M. E., Repo-Carrasco-Valencia, R., Pérez, G. T., Condezo-Hoyos, L. (2020). Physicochemical and functional properties of isolated starch and their correlation with flour from the Andean Peruvian quinoa varieties. International Journal of Biological Macromolecules, 147:997-1007.
[31] Zhu, F., Hua, Y., Li, G. (2020). Physicochemical properties of potato, sweet potato and quinoa starch blends. Food Hydrocolloids, 100:105278.
[32] Chilungo, S. (2013). Physicochemical properties and baking qualities of baked wheat products supplemented with cassava and pigeon pea flours: Michigan State University. Food Science.
[33] Jacobsen, S., Bach, A. (1998).The influence of temperature on seed germination rate in quinoa (Chenopodium quinoa Willd. Seed Science and Technology (Switzerland), 26:515-23.
[34] Wu, G., Morris, C. F., Murphy, K. M. (2017). Quinoa starch characteristics and their correlations with the texture profile analysis (TPA) of cooked quinoa. Journal of Food Science, 82:2387-95.
[35] Li, G., Zhu, F. (2017). Physicochemical properties of quinoa flour as affected by starch interactions. Food Chemistry, 221:1560-8.
[36] Srichuwong, S., Curti, D., Austin S., King R., Lamothe L., Gloria-Hernandez H. (2017). Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chemistry, 233:1-10.
[37] Li, G., Zhu F. (2018). Quinoa starch: Structure, properties, and applications. Carbohydrate Polymers.181:851-61.
[38] Zhu, F. (2015). Isolation, composition, structure, properties, modifications, and uses of yam starch. Comprehensive Reviews in Food Science and Food Safety.14:357-86.
[39] Biliaderis, C. G. (2009). Structural transitions and related physical properties of starch. Starch: Elsevier, 293-372.
[40] Tang, H., Watanabe, K., Mitsunaga T. (2002). Characterization of storage starches from quinoa, barley and adzuki seeds. Carbohydrate Polymers, 49:13-22.
[41] Qian, J., Kuhn, M. (1999). Characterization of Amaranthus cruentus and Chenopodium quinoa starch. Starch‐Stärke, 51:116-20.
[42] Inouchi, N., Nishi K., Tanaka, S., Asai, M., Kawase, Y., Hata, Y., et al. (1999). Characterization of amaranth and quinoa starches. Journal of Applied Glycoscience, 46:233-40.
[43] Steffolani, M. E., Villacorta, P., Morales‐Soriano, E. R., Repo‐Carrasco, R., León, A. E., Pérez, G. T. (2016). Physicochemical and functional characterization of protein isolated from different quinoa varieties (Chenopodium quinoa Willd.). Cereal Chemistry, 93:275-81.
[44] Tiga, B. H., Kumcuoglu, S., Vatansever, M., Tavman, S. (2021). Thermal and pasting properties of Quinoa—wheat flour blends and their effects on production of extruded instant noodles. Journal of Cereal Science, 97:103120.
[45] Abugoch, L., Castro, E., Tapia, C., Añón, M. C., Gajardo, P., Villarroel, A. (2009). Stability of quinoa flour proteins (Chenopodium quinoa Willd.) during storage. International Journal of Food Science and Technology, 44:2013-20.
[46] Alvarez-Jubete, L., Auty, M., Arendt, E. K., Gallagher, E. (2010). Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. European Food Research and Technology, 230:437-45.
[47] Kaur, A., Shevkani, K., Singh, N., Sharma, P., Kaur, S. (2015). Effect of guar gum and xanthan gum on pasting and noodle-making properties of potato, corn and mung bean starches. Journal of Food Science and Technology, 52:8113-21.
[48] Gudmundsson, M., Eliasson, A.-C. (1991).Thermal and viscous properties of rye starch extracted from different varieties. Cereal Chemistry, 68:172-7.
[49] Jiang, J., Dang, L., Tan, H., Pan B., Wei, H. (2017).Thin layer drying kinetics of pre-gelatinized starch under microwave. Journal of the Taiwan Institute of Chemical Engineers, 72:10-8.
[50] Kong, X., Zhu, P., Sui, Z., Bao, J. (2015). Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chemistry, 172:433-40.
alstra, P. (1992).Comparison of various methods to evaluate fracture phenomena in food materials. Journal of Texture Studies, 23:245-66.