1- Rasal, R.M., Janorkar, A.V. and Hirt, D.E., 2010. Poly (lactic acid) modifications. Progress in polymer science, 35(3),338-356.
2- Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M. and Desobry, S., 2010. Poly‐Lactic Acid: production, applications, nanocomposites, and release studies. Comprehensive reviews in food science and food safety, 9(5), 552-571.
3- Conn, R.E., Kolstad, J.J., Borzelleca, J.F., Dixler, D.S., Filer Jr, L.J., LaDu Jr, B.N. and Pariza, M.W., 1995. Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food and Chemical Toxicology, 33(4), 273-283.
4- Ray, S.S. and Bousmina, M., 2005. Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Progress in materials science, 50(8), 962-1079.
5- Ray, S.S. and Okamoto, M., 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in polymer science, 28(11), 1539-1641.
6- Pirsa, S., 2017. Design of a portable gas chromatography with a conducting polymer nanocomposite detector device and a method to analyze a gas mixture. Journal of separation science, 40(8), 1724-1730.
7- Pirsa, S. and Nejad, F.M., 2017. Simultaneous analysis of some volatile compounds in food samples by array gas sensors based on polypyrrole nano-composites. Sensor Review.
8- Pirsa, S., 2017. Chemiresistive gas sensors based on conducting polymers. In Handbook of Research on Nanoelectronic Sensor Modeling and Applications (pp. 150-180). IGI Global.
9- Pirsa, S., 2013. Fabrication of 1, 1-dimethylhydrazine gas sensor based on nano structure conducting polyaniline. Journal of Sciences, Islamic Republic of Iran, 24(3), 209-215.
10- Pirsa, S., Heidari, H. and Lotfi, J., 2016. Design selective gas sensors based on nano-sized polypyrrole/polytetrafluoroethylene and polypropylene membranes. IEEE Sensors Journal, 16(9), 2922-2928.
11- Alizadeh, N., Pirsa, S., Mani-Varnosfaderani, A. and Alizadeh, M.S., 2015. Design and fabrication of open-tubular array gas sensors based on conducting polypyrrole modified with crown ethers for simultaneous determination of alkylamines. IEEE Sensors Journal, 15(7), 4130-4136.
12- Li, Y., Li, G., Peng, H. and Chen, K., 2011. Facile synthesis of electroactive polypyrrole–chitosan composite nanospheres with controllable diameters. Polymer International, 60(4), 647-651.
13- Alizadeh, N., Pirsa, S., Mani-Varnosfaderani, A. and Alizadeh, M.S., 2015. Design and fabrication of open-tubular array gas sensors based on conducting polypyrrole modified with crown ethers for simultaneous determination of alkylamines. IEEE Sensors Journal, 15(7), 4130-4136.
14- Alizadeh, N., Ataei, A.A. and Pirsa, S., 2015. Nanostructured conducting polypyrrole film prepared by chemical vapor deposition on the interdigital electrodes at room temperature under atmospheric condition and its application as gas sensor. Journal of the Iranian Chemical Society, 12(9), 1585-1594.
15- Ghasemi, F., Pirsa, S., Alizadeh, M. and Mohtarami, F., 2018. Extraction and determination of volatile organic acid concentration in pomegranate, sour cherry, and red grape juices by PPy-Ag nanocomposite fiber for authentication. Separation Science and Technology, 53(1), 117-125.
16- Pirsa, S., Alizadeh, M. and Ghahremannejad, N., 2016. Application of nano-sized poly N-phenyl pyrrole coated polyester fiber to headspace microextraction of some volatile organic compounds and analysis by gas chromatography. Current Analytical Chemistry, 12(5), 457-464.
17- Alizadeh, M., Pirsa, S. and Faraji, N., 2017. Determination of lemon juice adulteration by analysis of gas chromatography profile of volatile organic compounds extracted with nano-sized polyester-polyaniline fiber. Food analytical methods, 10(6), 2092-2101.
18- Sheikh‐Mohseni, M.A. and Pirsa, S., 2016. Nanostructured Conducting Polymer/Copper Oxide as a Modifier for Fabrication of L‐DOPA and Uric Acid Electrochemical Sensor. Electroanalysis, 28(9), 2075-2080.
19- Pirsa, S., Zandi, M., Almasi, H. and Hasanlu, S., 2015. Selective hydrogen peroxide gas sensor based on nanosized polypyrrole modified by CuO nanoparticles. Sensor Letters, 13(7), 578-583.
20- Bruna, J.E., Peñaloza, A., Guarda, A., Rodríguez, F. and Galotto, M.J., 2012. Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Applied clay science, 58, 79-87.
21- Llorens, A., Lloret, E., Picouet, P.A., Trbojevich, R. and Fernandez, A., 2012. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology, 24(1), 19-29.
22- Peng, B., Fan, H. and Zhang, Q., 2013. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0. 8Ba0. 2ZrO3 thin film at room temperature. Advanced Functional Materials, 23(23), 2987-2992.
23- Pirsa, S. and Shamusi, T., 2019. Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film. Materials Science and Engineering: C, 102, 798-809.
24- Jabraili, A., Pirsa, S., Pirouzifard, M.K. and Amiri, S., 2021. Biodegradable nanocomposite film based on gluten/silica/calcium chloride: physicochemical properties and bioactive compounds extraction capacity. Journal of Polymers and the Environment, 1-15.
25- Hosseini, M.H., Razavi, S.H. and Mousavi, M.A., 2009. Antimicrobial, physical and mechanical properties of chitosan‐based films incorporated with thyme, clove and cinnamon essential oils. Journal of food processing and preservation, 33(6), 727-743.
26- Siripatrawan, U. and Harte, B.R., 2010. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food hydrocolloids, 24(8), 770-775.
27- Pirsa, S., Shamusi, T. and Kia, E.M., 2018. Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles. Journal of Applied Polymer Science, 135(34), 46617.
28- Asadi, S. and Pirsa, S., 2020. Production of biodegradable film based on polylactic acid, modified with lycopene pigment and TiO2 and studying its physicochemical properties. Journal of Polymers and the Environment, 28(2), 433-444.
29- Li, H., Nie, W., Deng, C., Chen, X. and Ji, X., 2009. Crystalline morphology of poly (L-lactic acid) thin films. European polymer journal, 45(1), 123-130.
30- Sung, S.Y., Sin, L.T., Tee, T.T., Bee, S.T., Rahmat, A.R., Rahman, W.A.W.A., Tan, A.C. and Vikhraman, M., 2013. Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110-123.
31- Vásconez, M.B., Flores, S.K., Campos, C.A., Alvarado, J. and Gerschenson, L.N., 2009. Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762-769.
32- Pirsa, S., 2016. Fast determination of water content of some organic solvents by smart sensor based on PPy-Ag nanoco. Nanoscience & Nanotechnology-Asia, 6(2), 119-127.
33- Delpouve, N., Stoclet, G., Saiter, A., Dargent, E. and Marais, S., 2012. Water barrier properties in biaxially drawn poly (lactic acid) films. The Journal of Physical Chemistry B, 116(15), 4615-4625.
34- Das, D., Nath, B.C., Phukon, P. and Dolui, S.K., 2013. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces B: Biointerfaces, 101, pp.430-433.
35- Wang, X., Tang, Y., Zhu, X., Zhou, Y. and Hong, X., 2020. Preparation and characterization of polylactic acid/polyaniline/nanocrystalline cellulose nanocomposite films. International journal of biological macromolecules, 146, 1069-1075.
36- Tang, Z., Fan, F., Chu, Z., Fan, C. and Qin, Y., 2020. Barrier properties and characterizations of poly (lactic acid)/ZnO nanocomposites. Molecules, 25(6), 1310.
37- Xie, S., Zhang, S., Wang, F., Yang, M., Seguela, R. and Lefebvre, J.M., 2007. Preparation, structure and thermomechanical properties of nylon-6 nanocomposites with lamella-type and fiber-type sepiolite. Composites science and technology, 67(11-12), 2334-2341.
38- García-López, D., Fernández, J.F., Merino, J.C., Santarén, J. and Pastor, J.M., 2010. Effect of organic modification of sepiolite for PA 6 polymer/organoclay nanocomposites. Composites Science and Technology, 70(10), 1429-1436.
39- Ten, E., Bahr, D.F., Li, B., Jiang, L. and Wolcott, M.P., 2012. Effects of cellulose nanowhiskers on mechanical, dielectric, and rheological properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites. Industrial & Engineering Chemistry Research, 51(7), 2941-2951.
40- Vasile, C., Râpă, M., Ştefan, M., Stan, M., Macavei, S., Darie-Niţă, R.N., Barbu-Tudoran, L., Vodnar, D.C., Popa, E.E., Ştefan, R. and Borodi, G., 2017. New PLA/ZnO: Cu/Ag bionanocomposites for food packaging. Express Polymer Letters, 11(7).
41- Alam, J., Alam, M., Raja, M., Abduljaleel, Z. and Dass, L.A., 2014. MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour. International journal of molecular sciences, 15(11), 19924-19937.
42- Aguirre, A., Borneo, R. and León, A.E., 2013. Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil. Food Bioscience, 1, 2-9.
43- Jamshidian, M., Tehrany, E.A., Imran, M., Akhtar, M.J., Cleymand, F. and Desobry, S., 2012. Structural, mechanical and barrier properties of active PLA–antioxidant films. Journal of Food Engineering, 110(3), 380-389.
44- Pelissari, F.M., Grossmann, M.V., Yamashita, F. and Pineda, E.A.G., 2009. Antimicrobial, mechanical, and barrier properties of cassava starch− chitosan films incorporated with oregano essential oil. Journal of agricultural and food chemistry, 57(16), 7499-7504.
45- Ezati, P. and Rhim, J.W., 2020. pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocolloids, 102, 105629.
46- Shokry, H., Vanamo, U., Wiltschka, O., Niinimäki, J., Lerche, M., Levon, K., Linden, M. and Sahlgren, C., 2015. Mesoporous silica particle-PLA–PANI hybrid scaffolds for cell-directed intracellular drug delivery and tissue vascularization. Nanoscale, 7(34), 14434-14443.