بررسی تاثیر پیش تیمار فراصوت بر چروکیدگی زغال اخته طی خشک کردن با هوای داغ

نویسندگان
1 دانشجوی دکتری، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه
2 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه
چکیده
در پژوهش حاضر، مدل­سازی چروکیدگی زغال اخته طی خشک کردن همرفتی به صورت لایه نازک و تاثیر پیش­تیمار فراصوت، دما و سرعت هوای خشک­کن بر میزان چروکیدگی زغال اخته بررسی شد. پیش­تیمار فراصوت در دو سطح زمانی 10 و 30 دقیقه روی نمونه­های زغال اخته اعمال شد و سپس این نمونه­ها در دماهای 40، 50 و 60 درجه سانتیگراد و سرعت­های هوای 1، 5/1 و 2 متر بر ثانیه خشک شدند. در ادامه، داده­های چروکیدگی با سه مدل­ تجربی (مدل­های موجود در منابع) برازش شدند. نتایج نشان داد که با کاهش محتوای رطوبت در طول خشک­شدن، مقدار ضخامت نمونه­ها از0138/0 متر در ابتدا به 0078/0 متر در انتهای فرآیند خشک­کردن کاهش می­یابد. استفاده از پیش­تیمار فراصوت باعث کاهش معنی­دار (P<0.05) میزان ضخامت شد. علاوه بر این، یکی از مدل­های ارزیابی شده به­عنوان مناسب­ترین مدل پیش­بینی کننده تغییرات ضخامت زغال اخته (99/0=R2) تحت شرایط مورد آزمایش انتخاب شد. با انجام آنالیز رگرسیون غیرخطی، رابطه بین ضرایب مدل انتخاب شده با متغیرهای به­کار رفته در این تحقیق به­دست آمد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of the effect of ultrasound pretreatment on shrinkage of cornelian cherry during hot air drying

نویسندگان English

Rasoul Ghorbani 1
Mohsen Esmaiili 2
1 PhD Student, Department of Food Science and Technology, Faculty of Agriculture, University of Urmia
2 Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Urmia
چکیده English

In this study, the effect of ultrasound pretreatment, air velocity and temperature on cornelian cherry shrinkage during hot air drying process were investigated. Ultrasound pretreatment at two time levels (10 and 30 minutes) was applied and then the samples were dried at 40, 50 and 60°C and 1, 1.5 and 2 m/s air velocity. Afterwards, shrinkage data were fitted to three experimental models. The results showed that with decreasing moisture content during drying, the thickness of the samples reduced from 0.0138 to 0.0078 m. The application of ultrasound pretreatment led to a significant (P<0.05) decrease in thickness. Moreover, one of the models was selected as the best suitable model in predicting thickness changes of cornelian cherry (R2=0.99) under the experimental conditions. Through multiple regression analysis, the relations between the coefficients of the models with the variables used were obtained.

کلیدواژه‌ها English

Drying
Cornelian cherry
Ultrasound
Shrinkage
Modeling
[1] Bijelic, S.M., Golosin, B.R., Ninic Todorovic, J.I., Cerovic, S.B., Popovic, B.M. (2011). Physicochemical Fruit Characteristics of Cornelian Cherry (Cornus mas L.) Genotypes from Serbia. HORTSCIENCE, 46, 849–853.
[2] Hassanpour, H., Hamidoghli, Y., Hajilo, J., Adlipour, M. (2011). Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Scientia Horticulturae, 129, 459-463.
[3] Tural, S., Koca, I. (2008). Physico-chemical and antioxidant properties of cornelian cherry fruits ( Cornus mas L.) grown in Turkey. Scientia Horticulturae, 116, 362-366.
[4] Seeram, N.P., Schutzki, R., Chandra, A., Nair, M.G. (2002). Characterization, Quantification, and Bioactivities of Anthocyanins in Cornus Species, Journal of Agricultural and Food Chemistry, 50, 2519-2523.
[5] Dehghannya, J., Gorbani, R., Ghanbarzadeh, B. (2015). Effect of ultrasound-assisted osmotic dehydration pretreatment on drying kinetics and effective moisture diffusivity of Mirabelle plum. Journal of Food Processing and Preservation, 39, 2710–2717.
[6] Guine, R.P.F., Fernandes, R.M.C. (2006). Analysis of the drying kinetics of chestnut. Journal of Food Engineering, 76, 460-467.
[7] Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98, 461-470.
[8] Bialobrzewski, I. (2006). Simultaneous heat and mass transfer in shrinkable apple slab during drying. Drying Technology, 24, 551-559.
[9] Koc, B., Eren, I., Ertekin, F.K. (2008). Modelling bulk density, porosity and shrinkage of quince during drying: The effect of drying method. Journal of Food Engineering, 85, 340-349.
[10] Panyawong, S., Devahastin, S. (2007). Determination of deformation of a food product undergoing different drying methods and conditions via evolution of a shape factor. Journal of Food Engineering, 78, 151-161.
[11] Deng, Y., Zhao, Y. (2008). Effects of pulsed-vacuum and ultrasound on the osmodehydration kinetics and microstructure of apples (Fuji). Journal of Food Engineering, 85, 84-93.
[12] Jambrak, A.R., Mason, T.J., Paniwnyk, L., Lelas, V. (2007). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81, 88-97.
[13] Fernandes, F.A.N., Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82, 261-267.
[14] Fernandesa, F.A.N., Rodrigues, S. (2008). Application of Ultrasound and Ultrasound-Assisted Osmotic Dehydration in Drying of Fruits. Drying Technology, 26, 1509-1516.
[15] Soria, A.C., Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Food Science and Technology, 21, 323-331.
[16] Fuente-Blanco, S.d.l., Sarabia, E.R.F.d., Acosta-Aparicio, V.M., Blanco-Blanco, A., Gallego-Juarez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523-e527.
[17] Schossler, K., Jager, H., Knorr, D. (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, 108, 103-110.
[18] Aprajeeta, J., Gopirajah, R., Anandharamakrishnan, C. (2015). Shrinkage and porosity effects on heat and mass transfer during potato drying. Journal of Food Engineering, 144, 119-128.
[19] Yan, Z., Sousa-Gallagher, M.J., Oliveira, F.A.R. (2008). Shrinkage and porosity of banana, pineapple and mango slices during air-drying. Journal of Food Engineering, 84, 430-440.
[20] Seiiedlou, S., Ghasemzadeh, H.R., Hamdami, N., Talati, F., Moghaddam, M. (2010). Convective drying of apple: mathematical modeling and determination of some quality parameters. International Journal of Agriculture and Biology, 12, 171-178.
[21] Hii, C.L., Law, C.L., Law, M.C. (2013). Simulation of heat and mass transfer of cocoa beans under stepwise drying conditions in a heat pump dryer. Applied Thermal Engineering, 54, 264-271.
[22] Hassini, L., Azzouz, S., Peczalski, R., Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79, 47–56.
[23] Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering. 113, 427-433.
[24] Mothibe, K.J., Zhang, M., Mujumdar, A.S., Wang, Y.C., Cheng, X. (2014). Effects of ultrasound and microwave pretreatments of apple before spouted bed drying on rate of dehydration and physical properties. Drying Technology. 32, 1848-1856.
[25] Ortuño, C., Pérez-Munuera, I., Puig, A., Riera, E., Garcia-Perez, J.V. (2010). Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying. Physics Procedia, 3, 153-159.
[26] Senadeera, W., Bhesh, R.B., Young, G., Wijesinghe, B., (2005). Modeling dimensional shrinkage of shaped foods in fluidized bed drying. Journal of Food Processing and Preservation. 29, 109–119.
[27] Yadollahinia, A., Jahangiri.M., (2009). Shrinkage of potato slice during drying Journal of Food Engineering. 94, 52–58.
[28] Schultz, E.L.M.M., Mazzuco, R.A.F., Machado, A., Bolzan, M.B., Quadri, M.G.N. (2007). Effect of pre–treatment on drying, density and shrinkage of apple slices. Journal of Food Engineering, 78, 1103-1110.
[29] Mayor, L., Sereno, A.M. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering, 61, 373-386.