تاثیر پوشش ریحان و کیتوزان بر سینتیک خشک کردن، رنگ، بافت و فعالیت آنتی اکسیدانی برگه های سیب: خشک کردن آون هوای داغ و تحت خلاء

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران
2 گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران
چکیده
به کارگیری پوشش ­های خوراکی می­ تواند به کاهش اثرات نامطلوب ایجاد شده توسط فرآیند خشک کردن میوه و سبزی، کمک نماید. در این پژوهش، اثر دو پوشش خوراکی ریحان و کیتوزان (با غلظت­ های 0، 5/0 و 1 درصد) بر سینتیک خشک کردن، رنگ، بافت و فعالیت آنتی­ اکسیدانی برگه­ های سیب در خشک­کن­ های آون هوای داغ و خلاء در دماهای مختلف (40، 50 و 60 درجه سانتیگراد) مورد بررسی قرار گرفت. نتایج نشان داد که استفاده از پوشش­ های مختلف در هر دو روش خشک­ کردن سبب افزایش زمان خشک­ کردن شد. برازش مدل­ های مختلف ریاضی بر داده ­های تجربی نشان داد که مدل میدیلی برای پوشش­ های صمغ ریحان و مدل تقریب پخش برای پوشش­ های با ماده کیتوزان با دقت بیشتری نسبت به سایر مدل­ ها قادر به پیش­بینی محتوی رطوبتی هستند. با افزایش غلظت پوشش یا کاهش دمای خشک کردن، مقدار روشنایی، چسبندگی، پیوستگی و فعالیت آنتی ­اکسیدانی افزایش ولی مقدار قرمزی، زردی، قهوه ­ای شدن، تغییر رنگ کلی و سفتی کاهش یافت. به طور کلی، پیش تیمارهای پوشش ­دهی ریحان و کیتوزان رویکردی مؤثری در بهبود کیفیت میوه سیب خشک شده در صنعت خشک کردن محسوب می ­شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of basil and chitosan coating on drying kinetic, color, texture and antioxidant activity of apple slices: hot air oven and vacuum drying

نویسندگان English

Negar Firouzi 1
Reza Farahmandfar 1
Jafar Mohammadzadeh Milani 1
Ali Motevali 2
1 Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Iran
2 Department of Mechanic of Biosystem Engineering, Sari Agricultural Sciences and Natural Resources University, Iran
چکیده English

The use of edible coatings can help reduce the undesired effects caused by the drying process of fruits and vegetables. In this study, the influence of two different edible coatings including basil and chitosan (0, 0.5 and 1 %) on drying kinetic, color, texture and antioxidant activity of apple slices were evaluated at different temperatures (40, 50 and 60 ˚C) in hot air oven and vacuum drying. The results showed that the use of different coatings in both drying methods increased the drying time. Fitting of different mathematical models on the experimental data showed that the Midili model for basil coatings and the approximation of diffusion model for chitosan coatings are able to predict the moisture content more accurately than other models. With increasing coating concentration or decreasing drying temperature the lightness, adhesiveness, cohesiveness and antioxidant activity enhanced. But, the redness, yellowness, brownness, total color difference and hardness diminished. Generally, basil and chitosan coating pretreatment could be considered as an effective approach to improve the quality of the dried apple fruit in drying industry.

کلیدواژه‌ها English

Oven
Coating
Drying
Basil
Chitosan
[1] Kim, A. N., Kim, H. J., Kerr, W. L., & Choi, S. G. (2017). The effect of grinding at various vacuum levels on the color, phenolics, and antioxidant properties of apple. Food chemistry, 216, 234-242.
[2] Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutrition journal, 3(1), 1-15.
[3] Bondonno, N. P., Bondonno, C. P., Blekkenhorst, L. C., Considine, M. J., Maghzal, G., Stocker, R., ... & Croft, K. D. (2018). Flavonoid‐Rich Apple Improves Endothelial Function in Individuals at Risk for Cardiovascular Disease: A Randomized Controlled Clinical Trial. Molecular nutrition & food research, 62(3), 1700674.
[4] Agricultural statistics. (2019). Garden products (3 ed). Ministry of Agriculture Jihad, Deputy of planning and economics “https://www.maj.ir”.
[5] Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., ... & Xiao, H. W. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical reviews in food science and nutrition, 59(9), 1408-1432.
[6] Sagar, V. R., & Kumar, P. S. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. Journal of food science and technology, 47(1), 15-26.
[7] Kumar, C., Karim, M. A., & Joardder, M. U. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48-57.
[8] Witrowa-Rajchert, D., Wiktor, A., Sledz, M., & Nowacka, M. (2014). Selected emerging technologies to enhance the drying process: A review. Drying Technology, 32(11), 1386-1396.
[9] Kayacan, S., Sagdic, O., & Doymaz, I. (2018). Effects of hot-air and vacuum drying on drying kinetics, bioactive compounds and color of bee pollen. Journal of Food Measurement and Characterization, 12(2), 1274-1283.
[10] Lee, J. H., & Kim, H. J. (2009). Vacuum drying kinetics of Asian white radish (Raphanus sativus L.) slices. LWT-Food Science and Technology, 42(1), 180-186.
[11] Khin, M. M., Zhou, W., & Perera, C. (2005). Development in the combined treatment of coating and osmotic dehydration of food-a review. International Journal of Food Engineering, 1(1).
[12] Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148.
[13] Naji-Tabasi, S., & Razavi, S. M. A. (2017). Functional properties and applications of basil seed gum: An overview. Food Hydrocolloids, 73, 313-325.
[14] Mujtaba, M., Morsi, R. E., Kerch, G., Elsabee, M. Z., Kaya, M., Labidi, J., & Khawar, K. M. (2019). Current advancements in chitosan-based film production for food technology; A review. International journal of biological macromolecules, 121, 889-904.
[15] Badawy, M. E., Rabea, E. I., AM El-Nouby, M., Ismail, R. I., & Taktak, N. E. (2017). Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. International Journal of Fruit Science, 17(2), 117-136.
[16] Midilli, A.D.N.A.N., Kucuk, H.A.Y.D.A.R., & Yapar, Z.İ.Y.A. (2002). A new model for single-layer drying. Drying technology, 20(7), 1503-1513.
[17] Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28(1), 296-0301.
[18] Chhinnan, M. S. (1984). Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans. Transactions of the ASAE, 27(2), 610-0615.
[19] Dandamrongrak, R., Young, G., & Mason, R. (2002). Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. Journal of Food Engineering, 55(2), 139-146.
[20] Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of food engineering, 63(3), 349-359.
[21] Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page's and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of food engineering, 66(3), 323-328.
[22] Ayensu, A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar energy, 59(4-6), 121-126.
[23] Farahmandfar, R., Asnaashari, M., & Sayyad, R. (2017). Antioxidant activity and total phenolic content of Capsicum frutescens extracted by supercritical CO2, ultrasound and traditional solvent extraction methods. Journal of Essential Oil Bearing Plants, 20(1), 196-204.
[24] Oliveira, D., & Silva, K. D. S. (2017). Effect of protein and polysaccharide-based edible coatings on quality of kiwifruit (Actinidia deliciosa) during drying. International Journal of Food Engineering, 13(12).
[25] Farahmandfar, R., Mohseni, M., & Asnaashari, M. (2017). Effects of quince seed, almond, and tragacanth gum coating on the banana slices properties during the process of hot air drying. Food science & nutrition, 5(6), 1057-1064.
[26] Silva, K. S., Garcia, C. C., Amado, L. R., & Mauro, M. A. (2015). Effects of edible coatings on convective drying and characteristics of the dried pineapple. Food and Bioprocess Technology, 8(7), 1465-1475.
[27] Salehi, F., & Kashaninejad, M. (2017). Effect of drying methods on textural and rheological properties of basil seed gum. International Food Research Journal, 24(5).
[28] Orikasa, T., Wu, L., Shiina, T., & Tagawa, A. (2008). Drying characteristics of kiwifruit during hot air drying. Journal of Food Engineering, 85(2), 303-308.
[29] Kaya, A., Aydın, O., & Kolaylı, S. (2010). Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food and bioproducts processing, 88(2-3), 165-173.