[1] Kim, A. N., Kim, H. J., Kerr, W. L., & Choi, S. G. (2017). The effect of grinding at various vacuum levels on the color, phenolics, and antioxidant properties of apple. Food chemistry, 216, 234-242.
[2] Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutrition journal, 3(1), 1-15.
[3] Bondonno, N. P., Bondonno, C. P., Blekkenhorst, L. C., Considine, M. J., Maghzal, G., Stocker, R., ... & Croft, K. D. (2018). Flavonoid‐Rich Apple Improves Endothelial Function in Individuals at Risk for Cardiovascular Disease: A Randomized Controlled Clinical Trial. Molecular nutrition & food research, 62(3), 1700674.
[4] Agricultural statistics. (2019). Garden products (3 ed). Ministry of Agriculture Jihad, Deputy of planning and economics “https://www.maj.ir”.
[5] Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., ... & Xiao, H. W. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical reviews in food science and nutrition, 59(9), 1408-1432.
[6] Sagar, V. R., & Kumar, P. S. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. Journal of food science and technology, 47(1), 15-26.
[7] Kumar, C., Karim, M. A., & Joardder, M. U. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48-57.
[8] Witrowa-Rajchert, D., Wiktor, A., Sledz, M., & Nowacka, M. (2014). Selected emerging technologies to enhance the drying process: A review. Drying Technology, 32(11), 1386-1396.
[9] Kayacan, S., Sagdic, O., & Doymaz, I. (2018). Effects of hot-air and vacuum drying on drying kinetics, bioactive compounds and color of bee pollen. Journal of Food Measurement and Characterization, 12(2), 1274-1283.
[10] Lee, J. H., & Kim, H. J. (2009). Vacuum drying kinetics of Asian white radish (Raphanus sativus L.) slices. LWT-Food Science and Technology, 42(1), 180-186.
[11] Khin, M. M., Zhou, W., & Perera, C. (2005). Development in the combined treatment of coating and osmotic dehydration of food-a review. International Journal of Food Engineering, 1(1).
[12] Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148.
[13] Naji-Tabasi, S., & Razavi, S. M. A. (2017). Functional properties and applications of basil seed gum: An overview. Food Hydrocolloids, 73, 313-325.
[14] Mujtaba, M., Morsi, R. E., Kerch, G., Elsabee, M. Z., Kaya, M., Labidi, J., & Khawar, K. M. (2019). Current advancements in chitosan-based film production for food technology; A review. International journal of biological macromolecules, 121, 889-904.
[15] Badawy, M. E., Rabea, E. I., AM El-Nouby, M., Ismail, R. I., & Taktak, N. E. (2017). Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. International Journal of Fruit Science, 17(2), 117-136.
[16] Midilli, A.D.N.A.N., Kucuk, H.A.Y.D.A.R., & Yapar, Z.İ.Y.A. (2002). A new model for single-layer drying. Drying technology, 20(7), 1503-1513.
[17] Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28(1), 296-0301.
[18] Chhinnan, M. S. (1984). Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans. Transactions of the ASAE, 27(2), 610-0615.
[19] Dandamrongrak, R., Young, G., & Mason, R. (2002). Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. Journal of Food Engineering, 55(2), 139-146.
[20] Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of food engineering, 63(3), 349-359.
[21] Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page's and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of food engineering, 66(3), 323-328.
[22] Ayensu, A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar energy, 59(4-6), 121-126.
[23] Farahmandfar, R., Asnaashari, M., & Sayyad, R. (2017). Antioxidant activity and total phenolic content of Capsicum frutescens extracted by supercritical CO2, ultrasound and traditional solvent extraction methods. Journal of Essential Oil Bearing Plants, 20(1), 196-204.
[24] Oliveira, D., & Silva, K. D. S. (2017). Effect of protein and polysaccharide-based edible coatings on quality of kiwifruit (Actinidia deliciosa) during drying. International Journal of Food Engineering, 13(12).
[25] Farahmandfar, R., Mohseni, M., & Asnaashari, M. (2017). Effects of quince seed, almond, and tragacanth gum coating on the banana slices properties during the process of hot air drying. Food science & nutrition, 5(6), 1057-1064.
[26] Silva, K. S., Garcia, C. C., Amado, L. R., & Mauro, M. A. (2015). Effects of edible coatings on convective drying and characteristics of the dried pineapple. Food and Bioprocess Technology, 8(7), 1465-1475.
[27] Salehi, F., & Kashaninejad, M. (2017). Effect of drying methods on textural and rheological properties of basil seed gum. International Food Research Journal, 24(5).
[28] Orikasa, T., Wu, L., Shiina, T., & Tagawa, A. (2008). Drying characteristics of kiwifruit during hot air drying. Journal of Food Engineering, 85(2), 303-308.
[29] Kaya, A., Aydın, O., & Kolaylı, S. (2010). Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food and bioproducts processing, 88(2-3), 165-173.