ارزیابی و مدل‌سازی سینتیک رهایش اسانس بومادران (Achillea millefolium L.) از فیلم‌ فعال ژلاتین-آلژینات سدیم به شبیه‌سازهای غذایی

نویسندگان
1 کارشناس ارشد، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان 38791-45371، ایران
2 استادیار، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان 38791-45371، ایران
3 دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، ایران.
چکیده
در پژوهش حاضر، فیلم‌های ژلاتین- آلژینات سدیم با غلظت‌های مختلف اسانس بومادران تهیه شد. انتشار اسانس بومادران از فیلم‌های ژلاتین- سدیم آلژینات به شبیه‌سازهای غذایی آبی (آب مقطر)، اسیدی (استیک اسید 3 درصد)، الکلی (اتانول 10 درصد) و چرب (اتانول 85 درصد) در دمای 25 درجه سلسیوس اندازه‌گیری شد. فیلم‌ها در همه شبیهسازهای غذایی نمایه انتشار مشابهی با انتشار سریع اولیه و به دنبال آن انتشار آهسته پایدار داشتند. نتایج نشان داد که رهایش اسانس بومادران از فیلم‌ها در شبیه‌ساز غذایی آبی به‌دلیل تورم در آب، سریع‌تر می‌باشد. فیلمها ساختار خود را تنها در شبیه‌ساز غذای چرب پس از 240 ساعت حفظ کردند. از مدل‌های شبکه عصبی مصنوعی (ANN) و ریاضی (مرتبه اول، کوپچا، هیگوچی، کورسمیر-پپاس، ویبال و هیکسون-کرول) برای توصیف رهایش اسانس از فیلم‌ها استفاده شد. نتایج مدل‌سازی ریاضی نشان داد که مدل ویبال می‌تواند سینتیک رهایش اسانس را برای همه شبیه‌سازهای غذایی به‌طور رضایت‌بخشی توصیف کند (حداقل ضریب همبستگی (R2) و میانگین خطای مربع (MSE) به ترتیب برابر 991/0 و 22/10). مدل شبکه عصبی مصنوعی با پیکربندی 1-15-17-3 سینتیک رهایش اسانس بومادران از فیلم ژلاتین-سدیم آلژینات را در تمام شبیه‌سازهای غذایی با ضریب همبستگی برابر 999/0 و میانگین خطای مربع برابر 56/0 پیش‌بینی کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation and modeling of the release kinetics of yarrow (Achillea millefolium L.) essential oil from gelatin-sodium alginate active film into food simulants

نویسندگان English

Parvaneh Karami 1
Mohsen Zandi 2
Ali Ganjloo 3
1 MSc degree, Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran
2 Assistant Professor, Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran
3 MSc degree, Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran
چکیده English

In the present research, gelatin-sodium alginate films incorporated with various concentrations of yarrow essential oil were prepared. The release of yarrow essential oil from gelatin-sodium alginate films into watery (distillated water), acidic (acetic acid 3%), alcoholic (ethanol 10%) and fatty (ethanol 85%) food simulants was measured at 25 ºC. In each simulant, all films had similar release profiles with an initial fast release followed by a sustained slow release. Results indicated that yarrow essential oil released faster from film in watery food stimulant due to the swelling in water. Films maintained their structures in fatty food simulant after 240 h. The artificial neural network (ANN) and mathematical (first order, Kopcha, Higuchi, Korsmeyer-Peppas, Weibull function and Hixson-crowell) models were applied to describing essential oil release from film. Mathematical modeling results indicated that Weibull model could satisfactorily describe the release kinetics of essential oil for all food simulant (minimal correlation coefficient (R2) and mean square error (MSE) of 0.991 and 10.22, respectively). The ANN model with 3-17-15-1 topology accurately predicted the kinetic release of yarrow essential oil from gelatin-sodium alginate film in all food simulant with R2 = 0.999 and MSE = 0.56.

کلیدواژه‌ها English

Yarrow essential oil
Gelatin-sodium alginate active films
mathematical modeling
artificial neural network
Food simulant
[1] Remedio, L.N., et al., Characterization of active chitosan films as a vehicle of potassium sorbate or nisin antimicrobial agents. Food Hydrocolloids, 2019. 87: p. 830-838.
[2] Tonyali, B., et al., Release kinetics of cinnamaldehyde, eugenol, and thymol from sustainable and biodegradable active packaging films. Food Packaging and Shelf Life, 2020. 24: p. 100484.
[3] Chiarappa, G., et al., Mathematical modeling of L-(+)-ascorbic acid delivery from pectin films (packaging) to agar hydrogels (food). Journal of Food Engineering, 2018. 234: p. 73-81.
[4] De Oliveira Filho, J.G., et al., Active food packaging: Alginate films with cottonseed protein hydrolysates. Food Hydrocolloids, 2019. 92: p. 267-275.
[5] Takma, D.K. and F. Korel, Active packaging films as a carrier of black cumin essential oil: Development and effect on quality and shelf-life of chicken breast meat. Food Packaging and Shelf Life, 2019. 19: p. 210-217.
[6] Da Silva Dannenberg, G., et al., Essential oil from pink pepper as an antimicrobial component in cellulose acetate film: Potential for application as active packaging for sliced cheese. LWT-Food Science and Technology, 2017. 81: p. 314-318.
[7] Dou, L., et al., Physical properties and antioxidant activity of gelatin-sodium alginate edible films with tea polyphenols. International journal of biological macromolecules, 2018. 118: p. 1377-1383.
[8] Bonilla, J., et al., Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films. Food bioscience, 2018. 23: p. 107-114.
[9]. Mihaly Cozmuta, A., et al., Assessment of the Effective Antioxidant Activity of Edible Films Taking into Account Films–Food Simulants and Films–Environment Interactions. Packaging Technology and Science, 2017. 30(1-2): p. 3-20.
[10] Benbettaïeb, N., et al., Modeling of the release kinetics of phenolic acids embedded in gelatin/chitosan bioactive-packaging films: Influence of both water activity and viscosity of the food simulant on the film structure and antioxidant activity. International Journal of Biological Macromolecules, 2020.
[11] Ribeiro‐Santos, R., et al., Potential of migration of active compounds from protein‐based films with essential oils to a food and a food simulant. Packaging Technology and Science, 2017. 30(12): p. 791-798.
[12] Rezaee, M., et al., Effect of organic additives on physiochemical properties and anti-oxidant release from chitosan-gelatin composite films to fatty food simulant. International journal of biological macromolecules, 2018. 114: p. 844-850.
[13] Gomaa, M., et al., Use of the brown seaweed Sargassum latifolium in the design of alginate-fucoidan based films with natural antioxidant properties and kinetic modeling of moisture sorption and polyphenolic release. Food Hydrocolloids, 2018. 82: p. 64-72.
[14] Lefnaoui, S., et al., Artificial neural network for modeling formulation and drug permeation of topical patches containing diclofenac sodium. Drug delivery and translational research, 2020. 10(1): p. 168-184.
[15] Rebouh, S., et al., Neuro-fuzzy modeling of ibuprofen-sustained release from tablets based on different cellulose derivatives. Drug delivery and translational research, 2019. 9(1): p. 162-177.
[16] Lefnaoui, S., et al. Artificial neural network modeling of sustained antihypertensive drug delivery using polyelectrolyte complex based on carboxymethyl-kappa-carrageenan and chitosan as prospective carriers. in 2018 International conference on applied smart systems (ICASS). 2018. IEEE.
[17] Zandi, M., A. Ganjloo, and M. Bimakr, Applying Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network to the Prediction of Quality changes of Hawthorn Fruit (Crataegus pinnatifida) during Various Storage Conditions. Journal of Agricultural Machinery, 2021. 11(2): p. 343-357.
[18] Salvagnini, L.E., et al., Evaluation of efficacy of preservatives associated with Achillea millefolium L. extract against Bacillus subtilis. Brazilian Journal of Microbiology, 2006. 37(1): p. 75-77.
[19] Ahmadi, D.A., et al., Comparison of Essential Oil of Achillea millefolium with Chemical Antioxidants and Preservatives. 2019.
[20] Ijaz, F., et al., Yarrow, in Medicinal Plants of South Asia. 2020, Elsevier. p. 685-697.
[21] Mahady, G.B., et al., In vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 2005. 19(11): p. 988-991.
[22] Farhadi, N., et al., Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea millefolium at different growth stages. Industrial Crops and Products, 2020: p. 112570.
[23] Applequist, W.L. and D.E. Moerman, Yarrow (Achillea millefolium L.): a neglected panacea? A review of ethnobotany, bioactivity, and biomedical research. Economic Botany, 2011. 65(2): p. 209.
[24] Dastjerdi, L.S. and A. Mazoji, Comparative chemical composition of the essential oils of Iranian Achillea oxyodonta from different ecological regions. Journal of Applied Pharmaceutical Science, 2015. 5(5): p. 106-109.
[25] Benedek, B., et al., Yarrow (Achillea millefolium L. sl): pharmaceutical quality of commercial samples. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2008. 63(1): p. 23-26.
[26] El-Kalamouni, C., et al., Antioxidant and antimicrobial activities of the essential oil of Achillea millefolium L. grown in France. Medicines, 2017. 4(2): p. 30.
[27] Verma, R.S., et al., Chemical composition and allelopathic, antibacterial, antifungal and in vitro acetylcholinesterase inhibitory activities of yarrow (Achillea millefolium L.) native to India. Industrial Crops and Products, 2017. 104: p. 144-155.
[28] Chandler, R.F., S.N. Hooper, and M.J. Harvey, Ethnobotany and phytochemistry of yarrow, Achillea millefolium, Compositae. Economic botany, 1982. 36(2): p. 203-223.
[29] Rohloff, J., et al., Production of yarrow (Achillea millefolium L.) in Norway: essential oil content and quality. Journal of Agricultural and Food Chemistry, 2000. 48(12): p. 6205-6209.
[30] Gavahian, M., et al., Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L. Innovative Food Science & Emerging Technologies, 2012. 14: p. 85-91.
[31] Tunç, M.T. and İ. Koca, Ohmic heating assisted hydrodistillation of clove essential oil. Industrial Crops and Products, 2019. 141: p. 111763.
[32] Liu, F., et al., Controlled-release of tea polyphenol from gelatin films incorporated with different ratios of free/nanoencapsulated tea polyphenols into fatty food simulants. Food Hydrocolloids, 2017. 62: p. 212-221.
[33] Rakmai, J., et al., Encapsulation of yarrow essential oil in hydroxypropyl-beta-cyclodextrin: physiochemical characterization and evaluation of bio-efficacies. CyTA-Journal of Food, 2017. 15(3): p. 409-417.
[34] Crank, J., The mathematics of diffusion. 1979: Oxford university press.
[35] Kopcha, M., N.G. Lordi, and K.J. Tojo, Evaluation of release from selected thermosoftening vehicles. Journal of pharmacy and pharmacology, 1991. 43(6): p. 382-387.
[36] Ritger, P.L. and N.A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of controlled release, 1987. 5(1): p. 37-42.
[37] Ritger, P.L. and N.A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of controlled release, 1987. 5(1): p. 23-36.
[38] Faidi, A., et al., Application of sodium alginate extracted from a Tunisian brown algae Padina pavonica for essential oil encapsulation: Microspheres preparation, characterization and in vitro release study. International journal of biological macromolecules, 2019. 136: p. 386-394.
[39] Mandal, B.B., J.K. Mann, and S. Kundu, Silk fibroin/gelatin multilayered films as a model system for controlled drug release. European Journal of Pharmaceutical Sciences, 2009. 37(2): p. 160-171.
[40] Arrieta, M.P., et al., Plasticized poly (lactic acid)–poly (hydroxybutyrate)(PLA–PHB) blends incorporated with catechin intended for active food-packaging applications. Journal of agricultural and food chemistry, 2014. 62(41): p. 10170-10180.
[41] Chen, X., et al., Release kinetics of tocopherol and quercetin from binary antioxidant controlled-release packaging films. Journal of Agricultural and Food Chemistry, 2012. 60(13): p. 3492-3497.
[42] Li, M., et al., Controlled release system by active gelatin film incorporated with β-cyclodextrin-thymol inclusion complexes. Food and Bioprocess Technology, 2018. 11(9): p. 1695-1702.
[43] Oussalah, M., et al., Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. Journal of Food Protection, 2006. 69(10): p. 2364-2369.
[44] Acevedo-Fani, A., R. Soliva-Fortuny, and O. Martín-Belloso, Photo-protection and controlled release of folic acid using edible alginate/chitosan nanolaminates. Journal of Food Engineering, 2018. 229: p. 72-82.
[45] Türe, H., Characterization of hydroxyapatite-containing alginate–gelatin composite films as a potential wound dressing. International journal of biological macromolecules, 2019. 123: p. 878-888.
[46] Dong, Z., Q. Wang, and Y. Du, Alginate/gelatin blend films and their properties for drug controlled release. Journal of Membrane Science, 2006. 280(1-2): p. 37-44.
[47] Madhumathi, K., L.J. Rekha, and T.S. Kumar, Tailoring antibiotic release for the treatment of periodontal infrabony defects using bioactive gelatin-alginate/apatite nanocomposite films. Journal of Drug Delivery Science and Technology, 2018. 43: p. 57-64.
[48] Williams, P.A., Handbook of industrial water soluble polymers. 2008: John Wiley & Sons.
[49] Ke, J., et al., The study of diffusion kinetics of cinnamaldehyde from corn starch-based film into food simulant and physical properties of antibacterial polymer film. International journal of biological macromolecules, 2019. 125: p. 642-650.
[50] Souza, V.G.L., et al., In vitro bioactivity of novel chitosan bionanocomposites incorporated with different essential oils. Industrial Crops and Products, 2019. 140: p. 111563.
[51] Chen, M., et al., Effects of temperature on release of eugenol and isoeugenol from soy protein isolate films into simulated fatty food. Packaging Technology and Science, 2012. 25(8): p. 485-492.
[52] Zeid, A., et al., Preparation and evaluation of antioxidant packaging films made of polylactic acid containing thyme, rosemary, and oregano essential oils. Journal of Food Processing and Preservation, 2019. 43(10): p. e14102.
[53] Gouda, R., H. Baishya, and Z. Qing, Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. J. Dev. Drugs, 2017. 6(02): p. 1-8.
[54] Costa, P. and J.M.S. Lobo, Modeling and comparison of dissolution profiles. European journal of pharmaceutical sciences, 2001. 13(2): p. 123-133.
[55] Arora, G., K. Malik, and I. Singh, Formulation and evaluation of mucoadhesive matrix tablets of taro gum: optimization using response surface methodology. Polimery w medycynie, 2011. 41(2): p. 23-34.
[56] Mehregan, H. and S. Mortazavi, The release behavior and kinetic evaluation of diltiazem HCl from various hydrophilic and plastic based matrices. 2005.
[57] Dias, M.V., et al., Thermal and morphological properties and kinetics of diffusion of antimicrobial films on food and a simulant. Food packaging and shelf life, 2018. 16: p. 15-22.
[58] Rezaeinia, H., et al., Electrohydrodynamic atomization of Balangu (Lallemantia royleana) seed gum for the fast-release of Mentha longifolia L. essential oil: Characterization of nano-capsules and modeling the kinetics of release. Food Hydrocolloids, 2019. 93: p. 374-385.
[59] Stoll, L., et al., Poly (acid lactic) films with carotenoids extracts: Release study and effect on sunflower oil preservation. Food chemistry, 2019. 281: p. 213-221.
[60] Colín-Chávez, C., et al., Diffusion of natural astaxanthin from polyethylene active packaging films into a fatty food simulant. Food research international, 2013. 54(1): p. 873-880.