مقایسه خواص فیزیکوشیمیایی پکتین حاصل از تفاله سیب به دو روش ماکروویو و تیمار با اسید در دمای بالا: بهینه‌یابی به روش سطح - پاسخ

نویسندگان
1 دانشجوی دکتری گروه فرآوری مواد غذایی مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران.
2 دکتری PhD دانشیار گروه فرآوری مواد غذایی مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران.
3 دکتری PhD استادیار گروه ماشین‌آلات مواد غذایی مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران.
چکیده
پکتین به جهت داشتن خواص عملکردی و تغذیه ­ای ویژه مانند تغلیظ‌کنندگی و ژل دهندگی جایگاه خاصی در صنایع غذایی دارد. هرچند استخراج پکتین از منابع مختلف گیاهی به روش­های مختلف انجام‌گرفته است، اما باتوجه‌به نوع منبع و روش مورداستفاده، خواص پکتین استحصالی متفاوت و طبیعتاً کاربرد متفاوتی خواهد داشت. براین‌اساس، این پژوهش باهدف بهینه­یابی و ارزیابی کمی و کیفی استخراج پکتین از تفاله سیب درختی به کمک ماکروویو و روش استخراج با اسید انجام گرفت. راندمان استخراج به کمک ماکروویو در دامنه pH 22/1 تا 78/1، زمان 6/10 تا 4/17 دقیقه و توان 320 تا 580 وات و به روش استخراج اسیدی در دامنه pH 5/1 تا 2، زمان 60 تا 90 دقیقه و دمای 75 تا 90 درجه سانتیگراد با روش سطح پاسخ (RSM) بهینه­یابی شد. نتایج نشان داد که در استخراج به کمک ماکروویو در pH 22/1، زمان 4/17 دقیقه و توان 580 وات و در روش استخراج اسیدی در pH 5/1، دمای 90 درجه سانتیگراد و در زمان 90 دقیقه حداکثر بازده استخراج (به ترتیب 17/9 و 83/8 %) مشاهده گردید. همچنین تحت شرایط بهینه استخراج در روش ماکروویو، پکتین با مشخصات کیفی بهتری (درجه استریفیکاسیون، گالاکتورونیک اسید، وزن معادل، محتوای متوکسیل، فعالیت امولسیفایری و ظرفیت نگهداری آب بالاتری) نسبت به روش اسیدی حاصل گردید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of physicochemical properties of pectin Extracted from apple pomace by microwave and high temperature acid treatment: optimization by surface – Response

نویسندگان English

Hamed Jamshidian 1
Ali Rafe 2
Seyyed Mahdi Mirzababaee 3
1 PhD student Food Processing Group Research Institute of Food Science and Technology, Mashahd, Iran
2 PhD Associate Professor of Food Processing Department, Research Institute of Food Science and Technology, Mashahd, Iran
3 PhD Assistant Professor of Food Machinery DepartmentResearch Institute of Food Science and Technology, Mashahd, Iran
چکیده English

Pectin is used as a coagulant in the food industry due to its thickening properties. Also, the polysaccharide is widely used in the food industry, which is due to its unique technological properties (its gelling properties in the production of jams and like jams such as fruit, etc.). The aim of this study was to optimize and evaluate the quantitative and qualitative evaluation of pectin extraction from apple pomace by microwave and acid extraction method. Microwave extraction efficiency in the pH range of 1.22 to 1.78, time 10.6 to 17.4 minutes and power 320 to 580 W and by acid extraction method in the pH range of 1.5 to 2, time 60 to 90 minutes and temperature of 75 to 90 °C was optimized by the response surface method (RSM). The results showed that in microwave extraction at pH 1.22, time 17.4 minutes and power 580 W and in acid extraction method at pH 1.5, temperature 90 °C and time 90 minutes maximum extraction efficiency (9.17 and 8.83% respectively) were observed. Also, under optimal microwave extraction conditions, pectin with better quality characteristics (higher degree of esterification, galacturonic acid, equivalent weight, methoxyl content, emulsifying activity and water holding capacity) was obtained than the traditional method.

کلیدواژه‌ها English

Gel
Pectin
apple pomace
traditional extraction method
Microwave
[1] M. Marić, A.N. Grassino, Z. Zhu, F.J. Barba, M. Brnčić, S.R. Brnčić. 2018. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction, Trends in Food Science & Technology, 76: 28-37.
[2] J.F. Richardson, J.H. Harker, J.R. Backhurst, Coulson and Richardson's chemical engineering: Particle technology and separation processes, Butterworth-Heinemann, 2002.
[3] N. Lopez, E. Puertolas, S. Condon, J. Raso, I. Alvarez. 2009. Enhancement of the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields, LWT-Food Science and Technology, 42: 1674-1680.
[4] R. Decareau, Microwave application in the food industry: A technical overview, in: Proceedings of the workshop on microwave applications in the food and beverage industry. Ontario Hydro, Toronto, 1986.
[5] S. Rust, D. Buskirk. 2008. Feeding apples or apple pomace in cattle diets, Cattle Call, 13: 2-3.
[6] A. Wikiera, M. Mika, M. Grabacka. 2015. Multicatalytic enzyme preparations as effective alternative to acid in pectin extraction, Food Hydrocolloids, 44: 156-161.
[7] D.R. Kammerer, J. Kammerer, R. Valet, R. Carle. 2014. Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients, Food Research International, 65: 2-12.
[8] I. Panchev, N. Kirtchev, C. Kratchanov. 1989. Kinetic model of pectin extraction, Carbohydrate polymers, 11: 193-204.
[9] F. Sosulski, M. Lin, E. Humbert. 1978. Gelation characteristics of acid-precipitated pectin from sunflower heads, Canadian Institute of Food Science and Technology Journal, 11: 113-116.
[10] W. Kim, V. Rao, C. Smit. 1978. Effect of chemical composition on compressive mechanical properties of low ester pectin gels, Journal of Food Science, 43: 572-575.
[11] D. Boldor, A. Kanitkar, B.G. Terigar, C. Leonardi, M. Lima, G.A. Breitenbeck. 2010. Microwave assisted extraction of biodiesel feedstock from the seeds of invasive Chinese tallow tree, Environmental science & technology, 44: 4019-4025.
[12] P. Richardson. 1991. Microwave technology-the opportunity for food processors, Food Science and Technology Today, 5: 146-148.
[13] M. Regier, H. Schubert. 2005. Measuring dielectric properties of foods, The microwave processing of foods: 41-60.
[14] M.L. Fishman, H.K. Chau, P.D. Hoagland, A.T. Hotchkiss. 2006. Microwave-assisted extraction of lime pectin, Food Hydrocolloids, 20: 1170-1177.
[15] H. Bagherian, F.Z. Ashtiani, A. Fouladitajar, M. Mohtashamy. 2011. Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit, Chemical engineering and processing: Process Intensification, 50: 1237-1243.
[16] H. Ebrahimian, M. Hashemiravan, N. Zand. 2017. Evaluation of effect of edible coating base on carboxy methyl cellulose, Pectin and osmotic dehydration on drying of Pumpkin, Int. J. Bio-Inorg. Hybr. Nanomater, 6: 205-213.
[17] D.-L. Su, P.-J. Li, S.Y. Quek, Z.-Q. Huang, Y.-J. Yuan, G.-Y. Li, Y. Shan. 2019. Efficient extraction and characterization of pectin from orange peel by a combined surfactant and microwave assisted process, Food chemistry, 286: 1-7.
[18] H. Saberian, Z. Hamidi-Esfahani, H.A. Gavlighi, M. Barzegar. 2017. Optimization of pectin extraction from orange juice waste assisted by ohmic heating, Chemical Engineering and Processing: Process Intensification, 117: 154-161.
[19] M. Kazemi, F. Khodaiyan, M. Labbafi, S.S. Hosseini, M. Hojjati. 2019. Pistachio green hull pectin: Optimization of microwave-assisted extraction and evaluation of its physicochemical, structural and functional properties, Food chemistry, 271: 663-672.
[20] S.A. El-Nawawi, F.R. Shehata. 1987. Extraction of pectin from Egyptian orange peel. Factors affecting the extraction, Biological Wastes, 20: 281-290.
[21] H. Endress. 2000. High Quality Resulting from Product Integrated Environment Protection (PIUS), Fruit Processing, 10: 273-277.
[22] H. Ziari, F.Z. Ashtiani, M. Mohtashamy. 2010. Comparing the effectiveness of processing parameters in pectin extraction from apple pomace, Afinidad, 67.
[23] G. Mesbahi, J. Jamalian, A. Farahnaky. 2005. A comparative study on functional properties of beet and citrus pectins in food systems, Food Hydrocolloids, 19: 731-738.
[24] E. Graña, T. Sotelo, C. Díaz-Tielas, F. Araniti, U. Krasuska, R. Bogatek, M.J. Reigosa, A.M. Sánchez-Moreiras. 2013. Citral induces auxin and ethylene-mediated malformations and arrests cell division in Arabidopsis thaliana roots, Journal of chemical ecology, 39: 271-282.
[25] J. Pagan, A. Ibarz, M. Llorca, A. Pagan, G. Barbosa-Cánovas. 2001. Extraction and characterization of pectin from stored peach pomace, Food Research International, 34: 605-612.
[26] B.M. Yapo, C. Robert, I. Etienne, B. Wathelet, M. Paquot. 2007. Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts, Food chemistry, 100: 1356-1364.
[27] M.J. Hong, D.Y. Kim, T.G. Lee, W.B. Jeon, Y.W. Seo. 2010. Functional characterization of pectin methylesterase inhibitor (PMEI) in wheat, Genes & genetic systems, 85: 97-106.
[28] S.-Y. Chan, W.-S. Choo. 2013. Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks, Food chemistry, 141: 3752-3758.
[29] T. Gachovska, D. Cassada, J. Subbiah, M. Hanna, H. Thippareddi, D. Snow. 2010. Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing, Journal of Food Science, 75: E323-E329.
[30] X. Guo, D. Han, H. Xi, L. Rao, X. Liao, X. Hu, J. Wu. 2012. Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: A comparison, Carbohydrate Polymers, 88: 441-448.
[31] X. Huang, D. Li, L.-j. Wang. 2017. Characterization of pectin extracted from sugar beet pulp under different drying conditions, Journal of Food Engineering, 211: 1-6.