بررسی اثر پپتیدهای زیست فعال گیاه آمارانت (Amaranthus hypochondriacus ) بر ویژگی های نان باگت

نویسندگان
1 دانشجوی دکتری، علوم و صنایع غذایی، دانشگاه ارومیه، ارومیه، ایران.
2 دانشیار، گروه علوم و صنایع غذایی، دانشگاه ارومیه، ارومیه، ایران.
3 استاد تمام، گروه علوم و صنایع غذایی، دانشگاه ارومیه، ارومیه، ایران.
4 دانشیار، گروه پاتوبیولوژی، پژوهشکده آرتمیا و آبزی‌پروری، دانشگاه ارومیه، ارومیه، ایران.
5 استادیار، گروه علوم و صنایع غذایی، دانشگاه ارومیه، ارومیه، ایران.
6 استاد تمام، گروه علوم و صنایع غذایی، دانشگاه صنعتی اصفهان، اصفهان، ایران.
چکیده
چکیده

پپیتدهای زیست فعال بخش­های پروتئینی ویژه­ای هستند که بر عملکرد و سلامت بدن انسان تاثیر به سزایی دارند. در این مطالعه تاثیر پروتئین­ها و پپتیدهای حاصل از هیدرولیز پروتئین­های آمارانت (پروتئین کل، آلبومین و ‌گلوبولین) در مقادیر ۱ تا ۵ درصد و زمان­های مختلف هیدرولیز (۵/۰، ۵/۱، ۳ و ۵ ساعت) بر خواص خمیرترش و کیفیت نان بررسی شد. نتایج نشان داد که پپتیدهای حاصل از هیدرولیز پروتئین کل آمارانت در زمان ۳ ساعت دارای بیشترین تاثیر بر رشد لاکتوباسیلوس پلانتاروم (PTCC 1896) (۴۰/۱۱ Log CFU/mL) و ساکارومایسس سرویزیه (PTCC 5052) (۳۲/۸ Log CFU/mL) در شرایط آزمایشگاهی بود. این میکروب­ها فلور اصلی خمیرترش هستند و مقادیر مختلف پپتید نسبت به نمونه­ی شاهد بر رشد آن­ها از نظر آماری تفاوت معنی­داری داشت. میزان اسیدیته قابل تیتر و pH‌ پس از ۱۶ ساعت تخمیر در دمای ۳۰ درجه سانتی­گراد در خمیرترش حاوی ۵٪ پپتید به ترتیب، ۳۳/۱۳ میلی­لیتر NaOHو ۶/۴ بودند که نسبت به سایر تیمارها بیشتر بود. بیشترین میزان فعالیت آبی، حجم مخصوص، اسیدیته قابل تیتر و کمترین آنتالپی در نان تهیه شد از خمیرترش حاوی ۳٪ پپتید حاصل شد. بنابراین نان تولید شده از خمیرترش حاوی ۳٪ پپتید به عنوان بهترین تیمار جهت افزایش کیفیت نان انتخاب شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of biopeptieds of Amaranth (Amaranthus hypochondriacus) on quality of Baguette bread

نویسندگان English

nayereh karimi 1
fariba zeynali 2
Mahmoud Rezazadeh Bari 3
Mehdi Nikoo 4
Forogh Mohtarami 5
Mehdi Kadivar 6
1 PhD Student, Food Science and Technology, Urmia University, Urmia, Iran.
2 Associate Professor, Department of Food Science and Technology, Urmia University, Urmia, Iran.
3 Professor, Department of Food Science and Technology, Urmia University, Urmia, Iran.
4 Associate Professor, Department of Pathobiology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran.
5 Assistant Professor, Department of Food Science and Technology, Urmia University, Urmia, Iran.
6 Professor, Department of Food Science and Technology, Isfahan University of Technology, Isfahan, Iran.
چکیده English

Bioactive peptides are special protein components that have a significant effect on human body function. In this study, the effect of proteins and peptides resulting from the hydrolysis of amaranth proteins (total protein, albumin, and globulin) at levels 1 to 5% and different hydrolysis times (0.5, 1.5, 3, and 5 hours) on The properties of sourdough and the quality of bread were investigated. The results showed that the peptides obtained by hydrolysis of total amaranth protein in 3 hours had the greatest effect on the growth of Lactobacillus Plantarum (PTCC 1896) (11.40 Log CFU / mL) and Saccharomyces cerevisiae (PTCC 5052) (8.32 Log CFU / mL) in vitro. These microbes are the main flora of sourdough and different amounts of peptides on their growth were statistically significant compared to the control sample. The titratable acidity and pH ‌ after 16 hours of fermentation at 30 ° C in the wet dough containing 5% peptide were 13.33 mL NaOH and 4.6, respectively, which was higher than other treatments. The highest amount of water activity, specific volume, titratable acidity, and the lowest enthalpy in bread was prepared from sourdough containing 3% peptide. Therefore, bread made from sourdough containing 3% peptides was selected as the best treatment to increase the quality of bread.

کلیدواژه‌ها English

Amaranth
Hydrolyzed protein
Sourdough
bread characteristics
[1] Delgado, M. C. O., Tironi, V. A., & Añón, M. C. (2011). Antioxidant activity of amaranth protein or their hydrolysates under simulated gastrointestinal digestion. LWT - Food Science and Technology, 44(8), 1752–1760. https://doi.org/10.1016/j.lwt.2011.04.002
[2] Zhou, Y., Yang, H., Zong, X., Cui, C., Mu, L., & Zhao, H. (2018). Effects of wheat gluten hydrolysates fractionated by different methods on the growth and fermentation performances of brewer's yeast under high gravity fermentation. International Journal of Food Science & Technology, 53(3), 812-818.
[3] Falade, A. T., Emmambux, M. N., Buys, E. M., & Taylor, J. R. N. (2014). Improvement of maize bread quality through modi fi cation of dough rheological properties by lactic acid bacteria fermentation. Journal of Cereal Science, 60(3), 471–476. https://doi.org/10.1016/j.jcs.2014.08.010
[4] Arendt, E. K., Ryan, L. A., & Dal Bello, F. (2007). Impact of sourdough on the texture of bread. Food Microbiology, 24(2), 165–174.
[5] Rabiei, S., Rezaei, M., Nikoo, M., Khezri, M., Rafieian-Kopai, M., & Anjomshoaa, M. (2021). Antioxidant properties of Klunzinger’s mullet (Liza klunzingeri) protein hydrolysates prepared with enzymatic hydrolysis using a commercial protease and microbial hydrolysis with Bacillus licheniformis. Food Science and Technology International, 10820132211005297.
[6] Acosta, C., Carpio, C., Vilcacundo, R., & Carrillo, W. (2016). Identification of proteins isolate from amaranth (Amaranthus caudatus) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with water and NaCl 0.1 m solvents. Asian J. Pharm. Clin. Res, 9(3), 331-334.Arendt, E. K., Ryan, L. A., & Dal Bello, F. (2007). Impact of sourdough on the texture of bread. Food microbiology, 24(2), 165-174.
[7] Montoya‐Rodríguez, A., Gómez‐Favela, M. A., Reyes‐Moreno, C., Milán‐Carrillo, J., & González de Mejía, E. (2015). Identification of bioactive peptide sequences from amaranth (Amaranthus hypochondriacus) seed proteins and their potential role in the prevention of chronic diseases. Comprehensive Reviews in Food Science and Food Safety, 14(2), 139-158.
[8] Karimi, N., Nikoo, M., Gavlighi, H. A., Gheshlaghi, S. P., Regenstein, J. M., & Xu, X. (2020). Effect of pacific white shrimp (Litopenaeus vannamei) protein hydrolysates (SPH) and (−)-epigallocatechin gallate (EGCG) on sourdough and bread quality. LWT, 131, 109800.
[9]Scilingo, A. A., Eugenia, S., Ortiz, M., Nora, E., & An, C. (2002). Amaranth protein isolates modified by hydrolytic and thermal treatments . Relationship between structure and solubility. 35, 855–862.
[10] Silva-Sánchez, C., De La Rosa, A. B., León-Galván, M. F., De Lumen, B. O., de León-Rodríguez, A., & De Mejía, E. G. (2008). Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. Journal of agricultural and food chemistry, 56(4), 1233-1240.
[11] Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Khaledabad, M. A. (2022). Characterization of antimicrobial peptides produced by Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 and their inhibitory effect against foodborne pathogens. LWT, 153, 112449.
[12] Barba de la Rosa, A.P. Barba Montoya, A. Pedro Martínez-Cuevas, P. Hernández-Ledesma, B.León-Galván, M.F. De León-Rodríguez, A. and González, C. 2010. Tryptic amaranth glutelin digests induce endothelial nitric oxide production through inhibition of ACE: Antihypertensive role of amaranth peptides. Nitric oxide, 23, 106–111.
[13] Nikoo, M., Benjakul, S., Ehsani, A., Li, J., Wu, F., Yang, N., and Xu, X. (2014). Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. Journal of Functional Foods, 7, 609-620.
[14] Vermeulen, N., Gánzle, M. G., & Vogel, R. F. (2006). Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451T and Lactobacillus plantarum TMW1. 468. Journal of Agricultural and Food Chemistry, 54(11), 3832-3839.
[15] Katina, K., Arendt, E., Liukkonen, K. H., Autio, K., Flander, L., & Poutanen, K. (2005). Potential of sourdough for healthier cereal products. Trends in Food Science & Technology, 16(1-3), 104-112.
[16] Liu, A., Jia, Y., Zhao, L., Gao, Y., Liu, G., Chen, Y., . . . Liu, S. (2018). Diversity of 433 isolated lactic acid bacteria in Ya'an sourdoughs and evaluation of their 434 exopolysaccharide production characteristics. Lwt, 95, 17-22. 435 doi:10.1016/j.lwt.2018.04.061
[17] Cagno, R.D. Angelis, M.D. Lavermicocca, P. Vincenzi, M.D. Giovannini, C. and Faccia, M. 2002. Proteolysis by Sourdough Lactic Acid Bacteria: Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance. Applied environmental microbiology. 68(2), 623-633.
[18] Meignen, B., Onno, B., Gelinas, P., Infantes, M., Guilois, S., & Cahagnier, B. (2001). Optimization of sourdough fermentation with Lactobacillus brevis and baker’s yeast. Food Microbiology, 18(3), 239–245.
[19] Phimolsiripol, Y., Siripatrawan, U., Tulyathan, V., & Cleland, D. J. (2008). Effects of freezing and temperature fluctuations during frozen storage on frozen dough and bread quality. Journal of Food Engineering, 84(1), 48-56.
[20]Yu, Yafang, Li Wang, Haifeng Qian, Hui Zhang, Yan Li, Gangcheng Wu, Xiguang Qi, Meijuan Xu, and Zhiming Rao. 2019. “Effect of Selected Strains on Physical and Organoleptic Properties of Breads.” Food Chemistry 276: 547–53. https://doi.org/10.1016/j.foodchem.2018.10.048
[21] Torrieri, E., Pepe, O., Ventorino, V., Masi, P., & Cavella, S. (2014). Effect of sourdough at different concentrations on quality and shelf life of bread. LWT - Food Science and Technology, 56(2), 508–516.
[22] Chinma, C. E., Anuonye, J. C., Ocheme, O. B., Abdullahi, S., Oni, S., Yakubu, C. M., & Azeez, S. O. (2016). Effect of acha and bambara nut sourdough flour addition on the quality of bread. LWT, 70, 223-228.
[23] Cárdenas-Torres, F. I., Reyes-Moreno, C., Vergara-Jiménez, M. D. J., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., Gutiérrez-Dorado, R., ... & Cabrera-Chávez, F. (2019). Assessing the sensitizing and allergenic potential of the albumin and globulin fractions from amaranth (Amaranthus hypochondriacus) grains before and after an extrusion process. Medicina, 55(3), 72.
[24] Janssen, F., Pauly, A., Rombouts, I., Jansens, K. J., Deleu, L. J., & Delcour, J. A. (2017). Proteins of amaranth (Amaranthus spp.), buckwheat (Fagopyrum spp.), and quinoa (Chenopodium spp.): A food science and technology perspective. Comprehensive Reviews in Food Science and Food Safety, 16(1), 39-58.
[25] Duan, S., Zhang, Y. X., Lu, T. T., Cao, D. X., & Chen, J. D. (2011). Shrimp waste fermentation using symbiotic lactic acid bacteria. Advanced Materials Research, 194, 2156–2163.
[26] Zhang, Q., Ren, J., Zhao, M., Zhao, H., Regenstein, J. M., Li, Y., & Wu, J. (2011). Isolation and characterization of three novel peptides from casein hydrolysates that stimulate the growth of mixed cultures of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Journal of agricultural and food chemistry, 59(13), 7045-7053.
[27] Corsetti, A., Gobbetti, M., Balestrieri, F., Paoletti, F., Russi, L., & Rossi, J. (1998). Sourdough lactic acid bacteria effects on bread firmness and stalin. Journal of Food Science, 63(2), 347-351.
[28] Fadda, C., Sanguinetti, A. M., Del Caro, A., Collar, C., & Piga, A. (2014). Bread staling: updating the view. Comprehensive Reviews in Food Science and Food Safety, 13(4), 473-492.
[29] Guo, L., Xu, D., Fang, F., Jin, Z., & Xu, X. (2020). Effect of glutathione on wheat dough properties and bread quality. Journal of Cereal Science, 96, 103116.
[30] Vijaykrishnaraj, M., Roopa, B. S., & Prabhasankar, P. (2016). Preparation of gluten free bread enriched with green mussel (Perna canaliculus) protein hydrolysates and characterization of peptides responsible for mussel flavour. Food Chemistry, 211, 715-725.
[31] Stromeck, A., Hu, Y., Chen, L., & G€anzle, M. G. (2011). Proteolysis and bioconversion of cereal proteins to glutamate and γ-aminobutyrate (GABA) in rye malt sourdoughs. Journal of Agricultural and Food Chemistry, 59(4), 1392–1399.