[1] Delgado, M. C. O., Tironi, V. A., & Añón, M. C. (2011). Antioxidant activity of amaranth protein or their hydrolysates under simulated gastrointestinal digestion. LWT - Food Science and Technology, 44(8), 1752–1760. https://doi.org/10.1016/j.lwt.2011.04.002
[2] Zhou, Y., Yang, H., Zong, X., Cui, C., Mu, L., & Zhao, H. (2018). Effects of wheat gluten hydrolysates fractionated by different methods on the growth and fermentation performances of brewer's yeast under high gravity fermentation. International Journal of Food Science & Technology, 53(3), 812-818.
[3] Falade, A. T., Emmambux, M. N., Buys, E. M., & Taylor, J. R. N. (2014). Improvement of maize bread quality through modi fi cation of dough rheological properties by lactic acid bacteria fermentation. Journal of Cereal Science, 60(3), 471–476. https://doi.org/10.1016/j.jcs.2014.08.010
[4] Arendt, E. K., Ryan, L. A., & Dal Bello, F. (2007). Impact of sourdough on the texture of bread. Food Microbiology, 24(2), 165–174.
[5] Rabiei, S., Rezaei, M., Nikoo, M., Khezri, M., Rafieian-Kopai, M., & Anjomshoaa, M. (2021). Antioxidant properties of Klunzinger’s mullet (Liza klunzingeri) protein hydrolysates prepared with enzymatic hydrolysis using a commercial protease and microbial hydrolysis with Bacillus licheniformis. Food Science and Technology International, 10820132211005297.
[6] Acosta, C., Carpio, C., Vilcacundo, R., & Carrillo, W. (2016). Identification of proteins isolate from amaranth (Amaranthus caudatus) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with water and NaCl 0.1 m solvents. Asian J. Pharm. Clin. Res, 9(3), 331-334.Arendt, E. K., Ryan, L. A., & Dal Bello, F. (2007). Impact of sourdough on the texture of bread. Food microbiology, 24(2), 165-174.
[7] Montoya‐Rodríguez, A., Gómez‐Favela, M. A., Reyes‐Moreno, C., Milán‐Carrillo, J., & González de Mejía, E. (2015). Identification of bioactive peptide sequences from amaranth (Amaranthus hypochondriacus) seed proteins and their potential role in the prevention of chronic diseases. Comprehensive Reviews in Food Science and Food Safety, 14(2), 139-158.
[8] Karimi, N., Nikoo, M., Gavlighi, H. A., Gheshlaghi, S. P., Regenstein, J. M., & Xu, X. (2020). Effect of pacific white shrimp (Litopenaeus vannamei) protein hydrolysates (SPH) and (−)-epigallocatechin gallate (EGCG) on sourdough and bread quality. LWT, 131, 109800.
[9]Scilingo, A. A., Eugenia, S., Ortiz, M., Nora, E., & An, C. (2002). Amaranth protein isolates modified by hydrolytic and thermal treatments . Relationship between structure and solubility. 35, 855–862.
[10] Silva-Sánchez, C., De La Rosa, A. B., León-Galván, M. F., De Lumen, B. O., de León-Rodríguez, A., & De Mejía, E. G. (2008). Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. Journal of agricultural and food chemistry, 56(4), 1233-1240.
[11] Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Khaledabad, M. A. (2022). Characterization of antimicrobial peptides produced by Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 and their inhibitory effect against foodborne pathogens. LWT, 153, 112449.
[12] Barba de la Rosa, A.P. Barba Montoya, A. Pedro Martínez-Cuevas, P. Hernández-Ledesma, B.León-Galván, M.F. De León-Rodríguez, A. and González, C. 2010. Tryptic amaranth glutelin digests induce endothelial nitric oxide production through inhibition of ACE: Antihypertensive role of amaranth peptides. Nitric oxide, 23, 106–111.
[13] Nikoo, M., Benjakul, S., Ehsani, A., Li, J., Wu, F., Yang, N., and Xu, X. (2014). Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. Journal of Functional Foods, 7, 609-620.
[14] Vermeulen, N., Gánzle, M. G., & Vogel, R. F. (2006). Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451T and Lactobacillus plantarum TMW1. 468. Journal of Agricultural and Food Chemistry, 54(11), 3832-3839.
[15] Katina, K., Arendt, E., Liukkonen, K. H., Autio, K., Flander, L., & Poutanen, K. (2005). Potential of sourdough for healthier cereal products. Trends in Food Science & Technology, 16(1-3), 104-112.
[16] Liu, A., Jia, Y., Zhao, L., Gao, Y., Liu, G., Chen, Y., . . . Liu, S. (2018). Diversity of 433 isolated lactic acid bacteria in Ya'an sourdoughs and evaluation of their 434 exopolysaccharide production characteristics. Lwt, 95, 17-22. 435 doi:10.1016/j.lwt.2018.04.061
[17] Cagno, R.D. Angelis, M.D. Lavermicocca, P. Vincenzi, M.D. Giovannini, C. and Faccia, M. 2002. Proteolysis by Sourdough Lactic Acid Bacteria: Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance. Applied environmental microbiology. 68(2), 623-633.
[18] Meignen, B., Onno, B., Gelinas, P., Infantes, M., Guilois, S., & Cahagnier, B. (2001). Optimization of sourdough fermentation with Lactobacillus brevis and baker’s yeast. Food Microbiology, 18(3), 239–245.
[19] Phimolsiripol, Y., Siripatrawan, U., Tulyathan, V., & Cleland, D. J. (2008). Effects of freezing and temperature fluctuations during frozen storage on frozen dough and bread quality. Journal of Food Engineering, 84(1), 48-56.
[20]Yu, Yafang, Li Wang, Haifeng Qian, Hui Zhang, Yan Li, Gangcheng Wu, Xiguang Qi, Meijuan Xu, and Zhiming Rao. 2019. “Effect of Selected Strains on Physical and Organoleptic Properties of Breads.” Food Chemistry 276: 547–53. https://doi.org/10.1016/j.foodchem.2018.10.048
[21] Torrieri, E., Pepe, O., Ventorino, V., Masi, P., & Cavella, S. (2014). Effect of sourdough at different concentrations on quality and shelf life of bread. LWT - Food Science and Technology, 56(2), 508–516.
[22] Chinma, C. E., Anuonye, J. C., Ocheme, O. B., Abdullahi, S., Oni, S., Yakubu, C. M., & Azeez, S. O. (2016). Effect of acha and bambara nut sourdough flour addition on the quality of bread. LWT, 70, 223-228.
[23] Cárdenas-Torres, F. I., Reyes-Moreno, C., Vergara-Jiménez, M. D. J., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., Gutiérrez-Dorado, R., ... & Cabrera-Chávez, F. (2019). Assessing the sensitizing and allergenic potential of the albumin and globulin fractions from amaranth (Amaranthus hypochondriacus) grains before and after an extrusion process. Medicina, 55(3), 72.
[24] Janssen, F., Pauly, A., Rombouts, I., Jansens, K. J., Deleu, L. J., & Delcour, J. A. (2017). Proteins of amaranth (Amaranthus spp.), buckwheat (Fagopyrum spp.), and quinoa (Chenopodium spp.): A food science and technology perspective. Comprehensive Reviews in Food Science and Food Safety, 16(1), 39-58.
[25] Duan, S., Zhang, Y. X., Lu, T. T., Cao, D. X., & Chen, J. D. (2011). Shrimp waste fermentation using symbiotic lactic acid bacteria. Advanced Materials Research, 194, 2156–2163.
[26] Zhang, Q., Ren, J., Zhao, M., Zhao, H., Regenstein, J. M., Li, Y., & Wu, J. (2011). Isolation and characterization of three novel peptides from casein hydrolysates that stimulate the growth of mixed cultures of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Journal of agricultural and food chemistry, 59(13), 7045-7053.
[27] Corsetti, A., Gobbetti, M., Balestrieri, F., Paoletti, F., Russi, L., & Rossi, J. (1998). Sourdough lactic acid bacteria effects on bread firmness and stalin. Journal of Food Science, 63(2), 347-351.
[28] Fadda, C., Sanguinetti, A. M., Del Caro, A., Collar, C., & Piga, A. (2014). Bread staling: updating the view. Comprehensive Reviews in Food Science and Food Safety, 13(4), 473-492.
[29] Guo, L., Xu, D., Fang, F., Jin, Z., & Xu, X. (2020). Effect of glutathione on wheat dough properties and bread quality. Journal of Cereal Science, 96, 103116.
[30] Vijaykrishnaraj, M., Roopa, B. S., & Prabhasankar, P. (2016). Preparation of gluten free bread enriched with green mussel (Perna canaliculus) protein hydrolysates and characterization of peptides responsible for mussel flavour. Food Chemistry, 211, 715-725.
[31] Stromeck, A., Hu, Y., Chen, L., & G€anzle, M. G. (2011). Proteolysis and bioconversion of cereal proteins to glutamate and γ-aminobutyrate (GABA) in rye malt sourdoughs. Journal of Agricultural and Food Chemistry, 59(4), 1392–1399.