[1] Çakmak, H., Özselek, Y., Turan, O. Y., Fıratlıgil, E., & Karbancioğlu-Güler, F. (2020). Whey protein isolate edible films incorporated with essential oils: Antimicrobial activity and barrier properties. Polymer Degradation and Stability, 179, 109285.
[2] Galus, S., & Kadzińska, J. (2016). Whey protein edible films modified with almond and walnut oils. Food Hydrocolloids, 52, 78-86.
[3] Shafie, M. H., Yusof, R., Samsudin, D., & Gan, C. Y. (2020). Averrhoa bilimbi pectin-based edible films: Effects of the linearity and branching of the pectin on the physicochemical, mechanical, and barrier properties of the films. International Journal of Biological Macromolecules, 163, 1276-1282.
[4] Shahrampour, D., Khomeiri, M., Razavi, S. M. A., & Kashiri, M. (2020). Development and characterization of alginate/pectin edible films containing Lactobacillus plantarum KMC 45. LWT, 118, 108758.
[5] Nouraddini, M., Mohtarami, F., & Esmaiili, M. (2019). The Effect of ZnO Nanoparticles on Physicochemical and AntioxidantProperties of Films Based on Gelatin and Russian Olive Flour. Iranian Journal of Biosystems Engineering, 50(3), 737-748.
[6] Nouri, A., Yaraki, M. T., Ghorbanpour, M., Agarwal, S., & Gupta, V. K. (2018). Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. International journal of biological macromolecules, 109, 1219-1231.
[7] Shankar, S., Wang, L. F., & Rhim, J. W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate polymers, 169, 264-271.
[8] Asdagh, A., Sani, I. K., Pirsa, S., Amiri, S., Shariatifar, N., Eghbaljoo–Gharehgheshlaghi, H., ... and Taniyan, A. (2021). Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. Journal of Polymers and the Environment, 29(1), 335-349.
[9] Amjadi, S., Almasi, H., Ghorbani, M., & Ramazani, S. (2020). Preparation and characterization of TiO2NPs and betanin loaded zein/sodium alginate nanofibers. Food Packaging and Shelf Life, 24, 100504.
[10] Yang, J., Fan, Y., Cui, J., Yang, L., Su, H., Yang, P., & Pan, J. (2021). Colorimetric films based on pectin/sodium alginate/xanthan gum incorporated with raspberry pomace extract for monitoring protein-rich food freshness. International Journal of Biological Macromolecules, 185, 959-965.
[11] Koosha, M., & Hamedi, S. (2019). Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Progress in Organic Coatings, 127, 338-347.
[12] Sharifi, K. A., & Pirsa, S. (2021). Biodegradable film of black mulberry pulp pectin/chlorophyll of black mulberry leaf encapsulated with carboxymethylcellulose/silica nanoparticles: Investigation of physicochemical and antimicrobial properties. Materials Chemistry and Physics, 267, 124580.
[13] Nisar, T., Wang, Z. C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680.
[14] Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food research international, 39(5), 639-644.
[15] Nafchi, A. M., Alias, A. K., Mahmud, S., & Robal, M. (2012). Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of food engineering, 113(4), 511-519.
[16] Mei, L. X., Nafchi, A. M., Ghasemipour, F., Easa, A. M., Jafarzadeh, S., & Al-Hassan, A. A. (2020). Characterization of pH sensitive sago starch films enriched with anthocyanin-rich torch ginger extract. International journal of biological macromolecules, 164, 4603-4612.
[17] Sani, I. K., Marand, S. A., Alizadeh, M., Amiri, S., & Asdagh, A. (2021). Thermal, mechanical, microstructural and inhibitory characteristics of sodium caseinate based bioactive films reinforced by ZnONPs/Encapsulated melissa officinalis essential oil. Journal of Inorganic and Organometallic Polymers and Materials, 31(1), 261-271.
[18] Sani, I. K., Geshlaghi, S. P., Pirsa, S., & Asdagh, A. (2021). Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117, 106719.
[19] Assis, R.Q., Lopes, S.M., Costa, T.M.H., Flôres, S.H. and de Oliveira Rios, A., 2017. Active biodegradable cassava starch films incorporated lycopene nanocapsules. Industrial Crops and Products, 109, pp.818-827.
[20] Oleyaei, S.A., Zahedi, Y., Ghanbarzadeh, B. and Moayedi, A.A., 2016. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. International Journal of Biological Macromolecules, 89, pp.256-264.
[21] Ojagh, M., Vejdan, A. and Abdollahi, M., 2018. Effect of nanoclay addition on the properties of agar/fish gelatin bilayer film containing TiO2 nanoparticles. Iranian Journal Food Science and Technology Research, 14(1), pp.27-38.
[22] Sugita, P., Ranindra, A., Arifin, B. and Irwanto, I., 2020, June. Physico-chemical and antioxidant properties of chitosan film with addition of β-carotene and butylated hydroxytoluene. In AIP Conference Proceedings (Vol. 2243, No. 1, p. 030024). AIP Publishing LLC.
[23] Esfahani, A., Ehsani, M., Mizani, M. and Mohammadi, A., 2020. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. International Journal of Biological Macromolecules, 157, pp.743-751.
[24] Ngo, T.M.P., Dang, T.M.Q., Tran, T.X. and Rachtanapun, P., 2018. Effects of zinc oxide nanoparticles on the properties of pectin/alginate edible films. International Journal of Polymer Science, 2018.
[25] Rambabu, K, Bharath, G, Banat, F, Show, PL and Cocoletzi, HH 2019, Mango leaf extract incorporated chitosan antioxidant film for active food packaging. International Journal of Biological Macromolecules, 126,1234-1243.
[26] Abdul-Rahman, S.M. and Abass, A.F., 2021, May. Preparation of Edible Films Made from Chitosan with Pomegranate Peel Extract and Study Its Barrier, Mechanical and Antioxidant Properties. In IOP Conference Series: Earth and Environmental Science (Vol. 761, No. 1, p. 012122). IOP Publishing.
[27] Noronha, C.M., De Carvalho, S.M., Lino, R.C., Barreto, P.L.M., 2014. Characterization of antioxidant methylcellulose film incorporated with??-tocopherol nanocapsules. Food Chem. 159, 529–535.
[28] Sugita, P., Ranindra, A., Arifin, B. and Irwanto, I., 2020, June. Physico-chemical and antioxidant properties of chitosan film with addition of β-carotene and butylated hydroxytoluene. In AIP Conference Proceedings (Vol. 2243, No. 1, p. 030024). AIP Publishing LLC.
[29] Liu, Z., Lv, M., Li, F., and Zeng, M., (2016). Development, Characterization, and Antimicrobial Activity of Gelatin/Chitosan/ZnO Nanoparticle Composite Films. Journal of aquatic food product technology, 25(7), 1056-1063.
[30] Jebel, F.S. and Almasi, H. (2016). Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydrate polymers, 149, pp.8-19.
[31] Pirsa, S., (2020). Biodegradable film based on pectin/Nano-clay/methylene blue: Structural and physical properties and sensing ability for measurement of vitamin C. International Journal of Biological Macromolecules, 163, 666-675.
[32] Shankar, S., Teng, X., Li, G., & Rhim, J. W. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264-271.
[33] Hejri, Z., Seifkordi, A. A., Ahmadpour, A., Zebarjad, S. M., & Maskooki, A. (2013). Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles. International Journal of Minerals, Metallurgy, and Materials, 20(10), 1001-1011.
[34] Babapour, H., Jalali, H., & Mohammadi Nafchi, A. (2021). The synergistic effects of zinc oxide nanoparticles and fennel essential oil on physicochemical, mechanical, and antibacterial properties of potato starch films. Food Science & Nutrition.
[35] Ahmed, J., Arfat, Y.A., Castro-Aguirre, E., and Auras, R., (2016). Mechanical, structural and thermal properties of Ag–Cu and ZnO reinforced polylactide nanocomposite films. International journal of biological macromolecules, 86, 885-892.
[36] Jayaramudu, J., Das, K., Sonakshi, M., Reddy, G.S.M., Aderibigbe, B., Sadiku, R., and Ray, S.S., (2014). Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films. International journal of biological macromolecules, 64, 428-434.
[37] Siripatrawan, U., Vitchayakitti, W., and Sanguandeekul, R., (2013). Antioxidant and antimicrobial properties of T hai propolis extracted using ethanol aqueous solution. Int. J. Food Sci. Technol, 48(1), 22-27.
[38] Farshchi, E., Pirsa, S., Roufegarinejad, L., Alizadeh, M., and Rezazad, M., (2019). Photocatalytic/biodegradable film based on carboxymethyl cellulose, modified by gelatin and TiO2-Ag nanoparticles. Carbohydrate polymers, 216, 189-196.
[39] Dash, K. K., Ali, N. A., Das, D., & Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International journal of biological macromolecules, 139, 449-458.