بررسی خواص فیزیکوشیمیایی و مکانیکی فیلم نانوکامپوزیت بر پایه وی پروتئین ایزوله و پکتین حاوی نانو ذرات اکسید مس و رنگدانه چغندر لبویی (بتانین)

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
2 گروه علوم و صنایع غذایی، دانشکده تکنولوژی های صنعتی، دانشگاه علوم مالزی(USM)
چکیده
امروزه، به علت افزایش نگرانی در مورد مواد زیست تخریب ناپذیر، مواد بسته بندی تجزیه پذیر بسیار مورد توجه قرار گرفته ­اند؛ لذا هدف از این پژوهش بررسی اثر رنگدانه بتانین در سطوح (5-5/2-0وزنی/ حجمی%) و نانو ذره اکسید مس در سطوح (4-2-0وزنی/حجمی%) در فیلم نانوکامپوزیت بر پایه وی پروتئین ایزوله/ پکتین در قالب طرح مرکب مرکزی بر خواص مکانیکی و ویژگی­های فیزیکوشیمیایی فیلم تولیدی می­باشد. نتایج حاصل نشان داد که با افزایش درصد رنگدانه بتانین و نانو ذره اکسید مس ضخامت و رطوبت نمونه­ ها افزایش و حلالیت کاهش یافت(P<0/05). همچنین با افزودن سطوح بالای رنگدانه بتانین قرمزی(a) افزایش و روشنایی(L) و زردی(b) نمونه­ها کاهش یافت. افزودن نانو ذره باعث کاهش شاخص b گردید در حالیکه بر شاخص a نمونه­ ها اثر معناداری نداشت. هم­چنین با افزودن رنگدانه و نانوذره مقاومت کششی و ازدیاد طول نمونه‌های فیلم به طور معناداری افزایش یافت(P<0/05). مطابق با تمامی نتایج حاصله استفاده از نانوذره اکسید مس و رنگدانه بتانین در فیلم نانوکامپوزیت منجربه تولید فیلمی مناسب برای بسته بندی مواد غذایی با خصوصیات فیزیکوشیمیایی و مکانیکی مطلوب می­باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of physicochemical and mechanical properties of nanocomposite film based on whey protein isolated and pectin containing copper oxide nanoparticles and lip beet pigment (betanine)

نویسندگان English

zahra shabahang 1
Leila Nouri 1
Abdorreza Mohammadi Nafchi 2
1 Food Science and Technology Department, Islamic Azad University, Damghan Branch, Damghan, Iran
2 Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
چکیده English

Today, biodegradable packaging materials have received a great deal of attention due to growing concerns about non-degradable materials; Therefore, the aim of this study was to investigate the effect of betanine pigment on surfaces (0, 2/5, 5 W/V%) and CuO nanoparticles on surfaces (0, 2, 4 W/V%) in nanocomposite film based on whey protein isolated / pectin in the form of a central composite design on the mechanical properties and physicochemical properties of the film is produced. The results showed that with increasing the percentage of betanine pigment and CuO nanoparticles, the thickness and moisture of the samples increased and the solubility decreased (P­<0.05). Also, by adding high levels of betanin pigment, redness (a) increased and brightness (L) and yellowing (b) of the samples decreased. Addition of nanoparticles decreased b value while it had no significant effect on a value of the samples. Also, by adding pigments and nanoparticles, tensile strength and elongation of film samples increased significantly (P <0.05). According to all the results, the use of CuO nanoparticles and betanine pigment in nanocomposite film leads to the production of a film suitable for food packaging with desirable physicochemical and mechanical properties.

کلیدواژه‌ها English

Edible film
CuO
Betanin pigment
Mechanical properties
[1] Çakmak, H., Özselek, Y., Turan, O. Y., Fıratlıgil, E., & Karbancioğlu-Güler, F. (2020). Whey protein isolate edible films incorporated with essential oils: Antimicrobial activity and barrier properties. Polymer Degradation and Stability, 179, 109285.
[2] Galus, S., & Kadzińska, J. (2016). Whey protein edible films modified with almond and walnut oils. Food Hydrocolloids, 52, 78-86.
[3] Shafie, M. H., Yusof, R., Samsudin, D., & Gan, C. Y. (2020). Averrhoa bilimbi pectin-based edible films: Effects of the linearity and branching of the pectin on the physicochemical, mechanical, and barrier properties of the films. International Journal of Biological Macromolecules, 163, 1276-1282.
[4] Shahrampour, D., Khomeiri, M., Razavi, S. M. A., & Kashiri, M. (2020). Development and characterization of alginate/pectin edible films containing Lactobacillus plantarum KMC 45. LWT, 118, 108758.
[5] Nouraddini, M., Mohtarami, F., & Esmaiili, M. (2019). The Effect of ZnO Nanoparticles on Physicochemical and AntioxidantProperties of Films Based on Gelatin and Russian Olive Flour. Iranian Journal of Biosystems Engineering, 50(3), 737-748.
[6] Nouri, A., Yaraki, M. T., Ghorbanpour, M., Agarwal, S., & Gupta, V. K. (2018). Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. International journal of biological macromolecules, 109, 1219-1231.
[7] Shankar, S., Wang, L. F., & Rhim, J. W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate polymers, 169, 264-271.
[8] Asdagh, A., Sani, I. K., Pirsa, S., Amiri, S., Shariatifar, N., Eghbaljoo–Gharehgheshlaghi, H., ... and Taniyan, A. (2021). Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. Journal of Polymers and the Environment, 29(1), 335-349.
[9] Amjadi, S., Almasi, H., Ghorbani, M., & Ramazani, S. (2020). Preparation and characterization of TiO2NPs and betanin loaded zein/sodium alginate nanofibers. Food Packaging and Shelf Life, 24, 100504.
[10] Yang, J., Fan, Y., Cui, J., Yang, L., Su, H., Yang, P., & Pan, J. (2021). Colorimetric films based on pectin/sodium alginate/xanthan gum incorporated with raspberry pomace extract for monitoring protein-rich food freshness. International Journal of Biological Macromolecules, 185, 959-965.
[11] Koosha, M., & Hamedi, S. (2019). Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Progress in Organic Coatings, 127, 338-347.
[12] Sharifi, K. A., & Pirsa, S. (2021). Biodegradable film of black mulberry pulp pectin/chlorophyll of black mulberry leaf encapsulated with carboxymethylcellulose/silica nanoparticles: Investigation of physicochemical and antimicrobial properties. Materials Chemistry and Physics, 267, 124580.
[13] Nisar, T., Wang, Z. C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680.
[14] Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food research international, 39(5), 639-644.
[15] Nafchi, A. M., Alias, A. K., Mahmud, S., & Robal, M. (2012). Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of food engineering, 113(4), 511-519.
[16] Mei, L. X., Nafchi, A. M., Ghasemipour, F., Easa, A. M., Jafarzadeh, S., & Al-Hassan, A. A. (2020). Characterization of pH sensitive sago starch films enriched with anthocyanin-rich torch ginger extract. International journal of biological macromolecules, 164, 4603-4612.
[17] Sani, I. K., Marand, S. A., Alizadeh, M., Amiri, S., & Asdagh, A. (2021). Thermal, mechanical, microstructural and inhibitory characteristics of sodium caseinate based bioactive films reinforced by ZnONPs/Encapsulated melissa officinalis essential oil. Journal of Inorganic and Organometallic Polymers and Materials, 31(1), 261-271.
[18] Sani, I. K., Geshlaghi, S. P., Pirsa, S., & Asdagh, A. (2021). Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117, 106719.
[19] Assis, R.Q., Lopes, S.M., Costa, T.M.H., Flôres, S.H. and de Oliveira Rios, A., 2017. Active biodegradable cassava starch films incorporated lycopene nanocapsules. Industrial Crops and Products, 109, pp.818-827.
[20] Oleyaei, S.A., Zahedi, Y., Ghanbarzadeh, B. and Moayedi, A.A., 2016. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. International Journal of Biological Macromolecules, 89, pp.256-264.
[21] Ojagh, M., Vejdan, A. and Abdollahi, M., 2018. Effect of nanoclay addition on the properties of agar/fish gelatin bilayer film containing TiO2 nanoparticles. Iranian Journal Food Science and Technology Research, 14(1), pp.27-38.
[22] Sugita, P., Ranindra, A., Arifin, B. and Irwanto, I., 2020, June. Physico-chemical and antioxidant properties of chitosan film with addition of β-carotene and butylated hydroxytoluene. In AIP Conference Proceedings (Vol. 2243, No. 1, p. 030024). AIP Publishing LLC. ‏
[23] Esfahani, A., Ehsani, M., Mizani, M. and Mohammadi, A., 2020. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. International Journal of Biological Macromolecules, 157, pp.743-751.
[24] Ngo, T.M.P., Dang, T.M.Q., Tran, T.X. and Rachtanapun, P., 2018. Effects of zinc oxide nanoparticles on the properties of pectin/alginate edible films. International Journal of Polymer Science, 2018.
[25] Rambabu, K, Bharath, G, Banat, F, Show, PL and Cocoletzi, HH 2019, Mango leaf extract incorporated chitosan antioxidant film for active food packaging. International Journal of Biological Macromolecules, 126,1234-1243.
[26] Abdul-Rahman, S.M. and Abass, A.F., 2021, May. Preparation of Edible Films Made from Chitosan with Pomegranate Peel Extract and Study Its Barrier, Mechanical and Antioxidant Properties. In IOP Conference Series: Earth and Environmental Science (Vol. 761, No. 1, p. 012122). IOP Publishing.
[27] Noronha, C.M., De Carvalho, S.M., Lino, R.C., Barreto, P.L.M., 2014. Characterization of antioxidant methylcellulose film incorporated with??-tocopherol nanocapsules. Food Chem. 159, 529–535.
[28] Sugita, P., Ranindra, A., Arifin, B. and Irwanto, I., 2020, June. Physico-chemical and antioxidant properties of chitosan film with addition of β-carotene and butylated hydroxytoluene. In AIP Conference Proceedings (Vol. 2243, No. 1, p. 030024). AIP Publishing LLC. ‏
[29] Liu, Z., Lv, M., Li, F., and Zeng, M., (2016). Development, Characterization, and Antimicrobial Activity of Gelatin/Chitosan/ZnO Nanoparticle Composite Films. Journal of aquatic food product technology, 25(7), 1056-1063.
[30] Jebel, F.S. and Almasi, H. (2016). Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydrate polymers, 149, pp.8-19.
[31] Pirsa, S., (2020). Biodegradable film based on pectin/Nano-clay/methylene blue: Structural and physical properties and sensing ability for measurement of vitamin C. International Journal of Biological Macromolecules, 163, 666-675.
[32] Shankar, S., Teng, X., Li, G., & Rhim, J. W. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264-271.
[33] Hejri, Z., Seifkordi, A. A., Ahmadpour, A., Zebarjad, S. M., & Maskooki, A. (2013). Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles. International Journal of Minerals, Metallurgy, and Materials, 20(10), 1001-1011.
[34] Babapour, H., Jalali, H., & Mohammadi Nafchi, A. (2021). The synergistic effects of zinc oxide nanoparticles and fennel essential oil on physicochemical, mechanical, and antibacterial properties of potato starch films. Food Science & Nutrition.
[35] Ahmed, J., Arfat, Y.A., Castro-Aguirre, E., and Auras, R., (2016). Mechanical, structural and thermal properties of Ag–Cu and ZnO reinforced polylactide nanocomposite films. International journal of biological macromolecules, 86, 885-892.
[36] Jayaramudu, J., Das, K., Sonakshi, M., Reddy, G.S.M., Aderibigbe, B., Sadiku, R., and Ray, S.S., (2014). Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films. International journal of biological macromolecules, 64, 428-434.
[37] Siripatrawan, U., Vitchayakitti, W., and Sanguandeekul, R., (2013). Antioxidant and antimicrobial properties of T hai propolis extracted using ethanol aqueous solution. Int. J. Food Sci. Technol, 48(1), 22-27.
[38] Farshchi, E., Pirsa, S., Roufegarinejad, L., Alizadeh, M., and Rezazad, M., (2019). Photocatalytic/biodegradable film based on carboxymethyl cellulose, modified by gelatin and TiO2-Ag nanoparticles. Carbohydrate polymers, 216, 189-196.
[39] Dash, K. K., Ali, N. A., Das, D., & Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International journal of biological macromolecules, 139, 449-458.