ارزیابی مهار فعالیت آنزیم های آلفا-آمیلاز و آلفا-گلوکوزیداز با برهم کنش ترکیبات فنولی، فیبر محلول و پروتئین استخراج شده از عدس سبز

نویسندگان
1 دانشجوی دکتری گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران
2 دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران
3 استاد، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران
4 دانشیار، گروه فراوری محصولات شیلاتی، دانشکده علوم دریایی، دانشکده تربیت مدرس، نور، ایران
5 استاد، گروه تغذیه، دانشکده علوم تغذیه، دانشگاه اتاوا، اتاوا، کانادا
چکیده
میزان مصرف عدس به دلیل ترکیبات مغذی و خواص عملکردی آن­ها به طور مداوم رو به رشد بوده است. دانه­های عدس سرشار از چندین ترکیب زیست فعال با اثر کنترل بر کاهش علائم دیابت، بیماری­های قلبی-عروقی و پیری می­باشد. در این مطالعه اثرات عصاره استونی، فیبر محلول و پروتئین استخراج شده از عدس سبز در غلظت 50 میلی­گرم بر میلی­لیتر بر خواص ضد دیابتی با اندازه­گیری مهار کنندگی فعالیت آنزیم آلفا-آمیلاز و آلفا-گلوکوزیداز مورد بررسی قرار گرفت. میزان مهار کنندگی فعالیت آنزیم آلفا-آمیلاز خوکی توسط عصاره استونی و پروتئین عدس اختلاف معناداری با یکدیگر نداشتند (05/0 > p). عصاره استونی بیش­ترین تاثیر را بر مهار فعالیت آنزیم گلوکوزیداز موشی داشت (08/67 درصد). همچنین کاهش شدت فلوئورسانس در اثر افزودن غلظت­های مختلف عصاره استونی، فیبر محلول و پروتئین عدس (25/0، 50/0، 1، 2 و 4 میلی­گرم بر میلی­لیتر) به آنزیم آلفا-آمیلاز و آلفا-گلوکوزیداز نشان دهنده ایجاد تغییرات در ساختار سوم آنزیم­ها بود. نتایج نشان داد که هر سه ترکیب استخراج شده از عدس به عنوان یک منبع طبیعی برای مهار فعالیت آنزیم­های آلفا-آمیلاز و آلفا-گلوکوزیداز محسوب شوند و در تهیه تولید مواد غذایی فراسودمند مورد استفاده قرار گیرند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of inhibitory effect of alpha-amylase and alpha-glucosidase by interaction phenolic compounds, soluble fiber, and protein extracted from green lentils

نویسندگان English

Maryam Jalili Safaryan 1
Hassan Ahmadi 2
Mohsen Barzegar 3
Mehdi Tabarsa 4
Chibuike Udenigwe 5
1 PhD student, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
2 Associate Professor, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
3 Professor, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
4 Associate Professor, Department of Seafood Processing, Tarbiat Modares University, Nur, Iran
5 Professor, Department of Nutrition, Ottawa University, Ottawa, Canada
چکیده English

Lentil consumption has been constantly growing due to its nutritional composition and functional properties. Lentil seeds are rich in several bioactive compounds with an effect on decreasing the symptoms of diabetes, cardiovascular disease, and aging. In this study, the effects of acetone extract (GLA extract), soluble fiber (GLSF), and protein (PGL) extracted from green lentils (concentration of 50 mg/ml) on anti-diabetic properties were investigated by measuring the inhibitory activity of alpha-amylase and alpha-glucosidase. There was no significant between the inhibitory activity of alpha-amylase activity by GLA extract and PGL (p < 0.05). Also GLA extract had the greatest effect on inhibition of glucosidase activity (67.08%). Fluorescence quenching had studied the changes in the tertiary structure of alpha-amylase and alpha-glucosidase using different concentrations (0, 0.25, 0.50, 1.00, 2.00, 4.00 mg/mL) of GLA extract, GLSF, and PGL. The results showed that all three compounds extracted from green lentils play as a natural source to inhibit the activity of alpha-amylase and alpha-glucosidase enzymes and be used in the production of functional foods.

کلیدواژه‌ها English

Green lentils
phenolic compounds
soluble fiber
Protein
Anti-diabetic
[1] Qi, S., and Zhou. D. 2013. Lotus seed epicarp extract as potential antioxidant and anti-obesity additive in Chinese Cantonese Sausage. Meat Science, 93: 257–262.
[2] Bozbulut, R., and Sanlier. N. 2019. Review. Promising effects of β-glucans on glyceamic control in diabetes. Trends in Food Science & Technology, 83: 159-166.
[3] Rasouli, H., Hosseini-Ghazvini, M. B., Adibi, H., & Khodarahmi, R. 2017. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food & Function, 8: 1942–1954.
[4] Xiao, J., Kai, G., Ni, X., Yang, F., & Chen, X. 2011. Interaction of natural polyphenols with a-amylase in vitro: molecular property–affinity relationship aspect. Molecular BioSystems, 7: 1883–1890.
[5] Hua, M., Sun, Y., Shao, Z., Lu, J., Lu, Y., & Li, Z. 2020. Functional soluble dietary fiber from ginseng residue: Polysaccharide characterization, structure, antioxidant, and enzyme inhibitory activity. Food Biochemistry, 1-11.
[6] Di Stefano, E., Oliviero, T., and Udenigwe, C. C. 2018. Functional significance and structure-activity relationship of food-derived α-glucosidase inhibitors. Current Opinion in Food Science, 20: p. 7–12.
[7] Sun, L., Chen, W., Meng, Y., Yang, X., Yuan, L., & Guo, Y. 2016. Interactions between polyphenols in thinned young apples and porcine pancreatic a-amylase: Inhibition, detailed kinetics and fluorescence quenching. Food Chemistry, 208: 51–60.
[8] Brummer, Y., Kaviani, M., and Tosh, S. M. 2015. Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International, 67: 117–125.
[9] Chen, X., He, X., Zhang, B., Sun, L., Liang, Z., & Huang, Q. 2019. Wheat gluten protein inhibits α-amylase activity more strongly than a soy protein isolate based on kinetic analysis. International Journal of Biological Macromolecules, 129: 433–441.
[10] Siva, N., Thavarajah, D., Johnson, C. R., Duckett, S., Jesch, E. D., & Thavarajah, P. 2017. Can lentil (Lens culinaris Medikus) reduce the risk of obesity? Journal of Functional Foods, 38: 706-715.
[11] Neta, I. M. R. and Castro, R. J. S. 2019. Enzyme-assisted extraction of biocomponents of lentils (Lens culinaris L.): Effect of process parameters on the recovery of compounds with antioxidant properties. Biocatalysis and Biotransformation, 38: 1-10.
[12] Yeo, J. D. and Shahidi, F. 2020. Identification and quantification of soluble and insoluble-bound phenolics in lentil hulls and their antioxidant potential. Food Chemistry, 315: 126202.
[13] Khazaei, H., Subedi, M., Nickerson, M., Martínez-Villaluenga, C., Frias, J., & Vandenberg, A. 2019. Review: Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods, 8: 1-23.
[14] Zou, Y., Chang, S. K. C., Gu, Y., & Qian, S. Y. 2011. Antioxidant Activity and Phenolic Compositions of Lentil (Lens culinaris var. Morton) Extract and Its Fractions. Journal of Agricultural and Food Chemistry, 59: 2268–2276.
[15] Slinkard, K. and Singleton, V. L. 1997. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49–55.
[16] Association of Official Analytical Chemists (AOAC). 2003. AOAC official method991.43 total, soluble, and insoluble dietary fiber in foods, in: W. Horwithz(Ed.), Official Methods of Analysis of the AOAC International, Rev. 2 (17th ed.), AOAC International, Gaithersburg, MD.
[17] Jarpa-Parra, M., Bamdad, F., Wang, Y., Tian, Z., Temelli, F., Han, J., & Chen, L. 2014. Optimization of lentil protein extraction and the influence of process pH on protein structure and functionality. LWT - Food Science and Technology, 57: 461-469.
[18] Alu'datt, M. H., Ereifej, K., Abu-Zaiton, A., Alrababah, M., Almajwal, A., Rababah, T., & Yang, W. 2012. Antioxidant, antidiabetic, and antihypertensive effects of extracted phenolics and hydrolyzed peptides from barley protein fractions. International Journal of Food Properties, 15: 781–795.
[19] Connolly, A., Piggott, C. O. and FitzGerald, R. J. 2014. In vitro α-glucosidase, angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of brewers' spent grain protein hydrolysates. Food Research International, 56: 100–107.
[20] Zheng, Y., Tian, J., Yang, W., Chen, S., Liu, D., Fang, H., Zhang, H., Ye, X. 2020. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chemistry, 317: 126346.
[21] Perez, A. A., Carrara, C. R., Sánchez, C. C., Patino, J. M., & Santiago, L. G. 2009. Interactions between milk whey protein and polysaccharide in solution. Food Chemistry, 116: 104–113.
[22] Zhang, B., Deng, Z., Ramdath, D., Tang, Y., X. Chen, P., Liu, R., Liu, Q., Tsao, R. 2015. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on a-glucosidase and pancreatic lipase. Food Chemistry, 172: 862–872.
[23] Tan, Y., Chang, S. K. C., and Zhang, Y. 2017. Comparison of a-amylase, a-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chemistry, 214: 259–268.
[24] Kim, K. T., Rioux, L. E, and Turgeon, S. L. 2014. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry, 98: 27–33.
[25] Tong, D. P., Zhu, K. X., Guo, X. N., Peng, W., & Zhou, H. M. 2018. The enhanced inhibition of water extract of black tea under baking treatment on α-amylase and α-glucosidase. International Journal of Biological Macromolecules, 107: 129-136.
[26] Jiang, Z., Yu, G., Liang, Y., Song, T., Zhu, Y., Ni, H., Yamaguchi, K., Tatsuya Oda, T. 2019. Inhibitory effects of a sulfated polysaccharide isolated from edible red alga Bangia fusco-purpurea on α-amylase and α-glucosidase. Bioscience, Biotechnology, and Biochemistry, 83: 2065–2074.
[27] Karimi, A., Azizi, M. H., and Ahmadi Gavlighi, H. 2020. Frationation of hydrolysate from corn germ protein by ultrafiltration: In vitro antidiabetic and antioxidant activity. Food Science and Nutrition, 8: 2395–2405.
[28] Ngoh, Y. Y., and Gan, C. Y. 2016. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chemistry, 190: 331–337.
[29] Admassu, H., Gasmalla, M. A. A., Yang, R., & Zhao, W. 2018. Identification of bioactive peptides with alpha-amylase inhibitory potential from enzymatic protein hydrolysates of red seaweed (Porphyra spp). Journal of Agricultural and Food Chemistry, 66: 4872–4882.
[30] Cardullo, N., Muccilli, V., Pulvirenti, L., Cornu, A., Pouységu, L., Deffieux, D., Quideau, S.,Tringali, C. 2020. C-glucosidic ellagitannins and galloylated glucoses as potential functional food ingredients with anti-diabetic properties: a study of α-glucosidase and α-amylase inhibition. Food Chemistry, 313: 126099.