ارزیابی دما و پارامترهای امواج میدان پالسی الکتریکی در استخراج قند از هویج

نویسندگان
1 دانشجوی کارشناسی ارشد، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد
2 استاد، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد
3 استادیار، گروه فرآوری مواد غذایی، موسسه علوم و صنایع غذایی
چکیده
غشاهای سلولی مانع اصلی استخراج ترکیبات درون‌سلولی هستند. متلاشی کردن مکانیکی و حرارت‌دهی جامدات بیولوژیکی از روشهای پیش‌تیمار معمول برای تخریب غشاهای سلولی و تسهیل رهاسازی حل‌شونده به حلال در طی استخراج هستند. با این حال، تخریب کلیت غشاها نیاز به حرارت‌دهی بیش از حد جامدات دارد که منجر به تغییر بافت گیاهی و عبور مواد نامطلوب (مثل پکتین در تولید قند) به حلال مجاور دارد که خود نیازمند هزینه های تغلیظ بعدی است. بکارگیری میدان الکتریکی پالسی (PEF)[1] با حرارت‌دهی کم محصول، بطور قابل توجهی انتقال جرم را در بافت بیولوژیکی گیاهان مختلف غذایی، افزایش می‌دهد که علاوه بر صرفه‌جویی در مصرف انرژی باعث صرفه‌جویی زیادی در زمان می‌شود. در این مطالعه، استخراج قند از هویج با تیمارهای مختلف میدان پالسی الکتریکی (شدت میدان 250، 750 و V/cm 1250، تعداد پالس 10، 45 و 80) و نیز بطور همزمان تیمارهای حرارتی مختلف (در دماهای 20، 45 و ºC70) مطالعه شد. سپس مدل ریاضی بازده استخراج بر اساس طرح فاکتوریل کامل ارائه شد. قطعات تیمار شده با PEF در آب در دمای مورد نظر و نسبت وزنی مایع به جامد 2= L/S غوطه‌ور شدند. افزایش قابل توجه سینتیک استخراج به علت نفوذپذیری غشای سلول بلافاصله بعد از تیمار PEF بعلت جابجایی حل شونده بر روی سطح بافت مشاهد شد.


[1] Pulsed Electric Field
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of temperature and pulsed electric field conditions on sugar extraction from carrots

نویسندگان English

Samere Dastangoo 1
Mohamad Taghi Hamed Mosavian 2
Samira Yeganehzad 3
1 MSc student, Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad
2 Professor, Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad
3 Assistant Professor, Food Processing Department, Research Institute of Food Science and Technology (RIFST)
چکیده English

Cell membranes are the main preventive of intracellular solute extraction. Mechanical destruction and thermal treatment are pre-treatment methods commonly used to destroy cell membranes and facilitate the release of solute into the solvent during the extraction. However, the overall rupture of membranes requires excessive heating that leads to altering plant tissue, passing solid materials through membranes (such as pectin in sugar production) to the adjacent solvent, and altering the chemical structure cell walls by hydrolytic reactions which itself requires further purification cost. Applying a pulsed electric field (PEF) with low heat treatment of products significantly enhances mass transfer into the biological tissues of food crops, which leads to saving much time and energy. In this study, extraction of sugar from carrots under both different pulsed electric field conditions (including field strengths of 250, 750, and 1250 V/cm and number of 10, 45, and 80 pulses) and thermal treatments (20, 45, and 70ºC) was investigated based on full factorial design experiments. Carrot slices treated with PEF were suspended in water at the desired temperature and liquid to solid (L/S) weight ratio of 2. Immediately after the PEF treatment, a significant increase in the solute extraction was observed because of the cell membrane permeability, which led to the enhancement of solute convection on the surface of the tissue.

کلیدواژه‌ها English

Pulsed electric field
Sugar
Extraction
Kinetic
[1] J. Azmir, I. S. M. Zaidul, M. M. Rahman, K. M. Sharif, A. Mohamed, F. Sahena, M. H. A. Jahurul, K. Ghafoor, N. A. N. Norulaini, and A. K. M. Omar, 2013, “Techniques for extraction of bioactive compounds from plant materials: a review,” J. Food Eng., vol. 117, no. 4, pp. 426–436.
[2] P. W. Van der Poel, 1998, “Sugar Technology Beet and Cane Sugar Manufacture PW van der Poel, H. Schiweck, T. Schwartz,” Berlin Verlag Dr. Bartens KG, pp. 479–563.
[3] A. K. Mandal, Subhash C.; Mandal, Vivekananda; Das, 2015, “Classification of Extraction Methods,” in Essentials of Botanical Extraction, Elsevier, pp. 83–136.
[4] M. Corrales, S. Toepfl, P. Butz, D. Knorr, and B. Tauscher, 2008, “Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison,” Innov. Food Sci. Emerg. Technol., vol. 9, no. 1, pp. 85–91.
[5] I. Aguiló-Aguayo, M. B. Hossain, N. Brunton, J. Lyng, J. Valverde, and D. K. Rai, 2014, “Pulsed electric fields pre-treatment of carrot purees to enhance their polyacetylene and sugar contents,” Innov. Food Sci. Emerg. Technol., vol. 23, pp. 79–86.
[6] K. V Loginova, E. Vorobiev, O. Bals, and N. I. Lebovka, 2011, “Pilot study of countercurrent cold and mild heat extraction of sugar from sugar beets, assisted by pulsed electric fields,” J. Food Eng., vol. 102, no. 4, pp. 340–347.
[7] N. I. Lebovka, M. V Shynkaryk, K. El-Belghiti, H. Benjelloun, and E. Vorobiev, 2007, “Plasmolysis of sugarbeet: pulsed electric fields and thermal treatment,” J. Food Eng., vol. 80, no. 2, pp. 639–644.
[8] E. Puértolas and I. Martínez de Marañón, 2015, “Olive oil pilot-production assisted by pulsed electric field: Impact on extraction yield, chemical parameters and sensory properties,” Food Chem., vol. 167, pp. 497–502.
[9] O. Parniakov, N. Lebovka, E. Van Hecke, and E. Vorobiev, 2013, “Pulsed Electric Field Assisted Pressure Extraction and Solvent Extraction from Mushroom (Agaricus Bisporus), ”Food and Bioprocess Technology., vol. xx, pp. 1–10.
[10] K. El‐Belghiti, Z. Rabhi, and E. Vorobiev, 2005, “Kinetic model of sugar diffusion from sugar beet tissue treated by pulsed electric field,” J. Sci. Food Agric., vol. 85, no. 2, pp. 213–218.
[11] A. J. H. Sale and W. A. Hamilton, 1967, “Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts,” Biochim. Biophys. Acta (BBA)-General Subj., vol. 148, no. 3, pp. 781–788.
[12] P. J. Canatella, J. F. Karr, J. A. Petros, and M. R. Prausnitz, 2001, “Quantitative study of electroporation-mediated molecular uptake and cell viability,” Biophys. J., vol. 80, no. 2, pp. 755–764.
[13] K. Aronsson, M. Lindgren, B. R. Johansson, and U. Rönner, 2001, “Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae,” Innov. Food Sci. Emerg. Technol., vol. 2, no. 1, pp. 41–54.
[14] N. I. Lebovka, M. I. Bazhal, and E. Vorobiev, 2001, “Pulsed electric field breakage of cellular tissues: visualisation of percolative properties,” Innov. Food Sci. Emerg. Technol., vol. 2, no. 2, pp. 113–125.
[15] F. De Vito, G. Ferrari, N. I. Lebovka, N. V Shynkaryk, and E. Vorobiev, 2008, “Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields,” Food Bioprocess Technol., vol. 1, no. 4, pp. 307–313.
[16] K. El Belghiti and E. Vorobiev, 2004, “Mass transfer of sugar from beets enhanced by pulsed electric field,” Food Bioprod. Process., vol. 82, no. 3, pp. 226–230.
[17] K. El-Belghiti and E. Vorobiev, 2005, “Modelling of solute aqueous extraction from carrots subjected to a pulsed electric field pre-treatment,” Biosyst. Eng., vol. 90, no. 3, pp. 289–294.
[18] E. Puértolas, O. Cregenzán, E. Luengo, I. Álvarez, and J. Raso, 2013, “Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato,” Food Chem., vol. 136, no. 3, pp. 1330–1336.
[19] K. EL‐BELGHITI, A. Moubarik, and E. Vorobiev, 2008, “Aqueous extraction of solutes from fennel (Foeniculum vulgare) assisted by pulsed electric field,” J. Food Process Eng., vol. 31, no. 4, pp. 548–563.
[20] A. Maskooki and M. N. Eshtiaghi, 2012, “Impact of pulsed electric field on cell disintegration and mass transfer in sugar beet,” Food Bioprod. Process., vol. 90, no. 3, pp. 377–384.
[21] N. I. Lebovka, I. Praporscic, S. Ghnimi, and E. Vorobiev, 2005, “Temperature enhanced electroporation under the pulsed electric field treatment of food tissue,” J. Food Eng., vol. 69, no. 2, pp. 177–184.
[22] P. R. Postma, G. Pataro, M. Capitoli, M. J. Barbosa, R. H. Wijffels, M. H. M. Eppink, G. Olivieri, and G. Ferrari, 2016, “Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field–temperature treatment,” Bioresour. Technol., vol. 203, pp. 80–88.
[23] U. Zimmermann,1986, Electrical breakdown, electropermeabilization and electrofusion. Springer.
[24] M. E. A. Mohamed, H. Ayman, and A. Eissa, 2012, Pulsed electric fields for food processing technology. INTECH Open Access Publisher.
[25] S. Toepfl, V. Heinz, and D. Knorr, 2005, “Overview of pulsed electric field processing for food,” Emerg. Technol. food Process., pp. 69–97.
[26] J. Masse, L. Shu, V. Jegatheesan, J.-B. Gros, and D. D. Phong, 2013, “Variations in the physical and biochemical properties of sugarcane juice before and after microfiltration,” Solut. to Environ. challenges through Innov. Res., pp. 121–142.
[27] F. J. B. Polarimetry, 1942, “Saccharimetry and the Sugars,” C440, pp. 442–450.
[28] A. Angersbach, V. Heinz, and D. Knorr, 2000, “Effects of pulsed electric fields on cell membranes in real food systems,” Innov. Food Sci. Emerg. Technol., vol. 1, no. 2, pp. 135–149.
[29] A. Maskooki and M. N. Eshtiaghi, 2012, “Impact of pulsed electric field on cell disintegration and mass transfer in sugar beet,” Food Bioprod. Process., vol. 90, no. 3, pp. 377–384.