بررسی بر رفتار خشک شدن کدوحلوایی به روش تابشی انکساری- هوای داغ

نویسندگان
1 دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 گروه مهندسی بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده
در این تحقیق فرآیند خشک شدن لایه نازک کدو حلوایی ­با روش تابشی انکساری و هوای داغ بررسی و تاثیر دما و سینتیک خشک شدن­ کدو حلوایی و ارائه بهترین مدل ریاضی به منظور برازش تغییرات نسبت رطوبت به زمان تعیین گردید. در ابتدا برش های کدو حلوایی با ضخامت‌های 3، 5­­ و­ 7 (میلی متر) تهیه شد. خشک شدن با دو روش تابشی انکساری با دماهای 75،­ 85 و 95 (درجه سانتی گراد) و جابجایی با هوای داغ با دماهای 55، 65 و 75 (درجه سانتی گراد) در سه تکرار انجام شد. در ارزیابی سینتیکی نمونه های خشک شده با مدل‌های هایلا و کلاک ضخامت نمونه و دمای خشک شدن بهینه تعیین شد (روش جابجایی هوای داغ، با ضخامت 7 (میلی متر) و دمای 55 (درجه سانتی گراد)؛ روش تابشی انکساری، با ضخامت 7 (میلی متر) و دمای95 (درجه سانتی گراد). پنج مدل تجربی سینتیکی برازش داده با چهار معیار ضریب تبیین، ریشه میانگین مربعات خطا، پیش بینی انحراف مربعات و نسبت ضریب تبیین به ریشه میانگین مربعات خطا تجزیه و تحلیل قرار گرفت. همچنین، قانون دوم فیک برای ارزیابی ضریب نفوذ موثر رطوبت و معادله آرنیوس در تعیین انرژی فعال سازی (Ea) استفاده گردید­. ­­نتایج نشان داد که مدل هایلا و کلاک نسبت به سایر مدل ها به نحو مناسب تری مراحل خشک شدن لایه نازک کدو حلوایی را ارزیابی می نماید. مقدار انرژی فعال سازی 5310588/37 (کیلوژول بر مول) برای هوای داغ و 32657/20 (کیلوژول بر مول) برای روش تابشی انکساری تعیین گردید. بهترین مدل ریاضی خشک شدن لایه نازک کدو حلوایی با روش تابشی انکساری و روش جابجایی با هوای داغ مدل هایلا و کلاک پیشنهاد شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Study of Drying Behavior of Pumpkin by Convective Hot Air Drying– Cast Tape Drying

نویسندگان English

Bijan Askari 1
Mahdi Kashaninejad 1
Aman mohammad Ziaiifar 1
Ebrahim Esmaeelzade 2
1 Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Department of Biosystem Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده English

In this study, the drying process of pumpkin thin layers was investigated by cast tape drying (CTD) and convective hot air drying (CHD) methods and the effect of temperature and drying kinetics of the pumpkin was determined along with the best mathematical model to fit the changes on moisture content to time ratio. At first, Pumpkin slices were prepared with 3, 5 and 7 mm thicknesses. Drying was performed at 75, 85 and 95 (°C) by CTD method and at 55, 65 and 75(°C) by CHT method in triplicate. Based on the kinetic model evaluated by Hii, Law and Cloke, the 7 mm thickness was selected as an optimum thickness in both drying methods. The optimal drying temperature ranges were 55 and 95 (°C) by CHD method and CTD method, respectively. Five mathematical kinetic models were fitted on the experimental data using four criteria including, Determination of Coefficient (R2), Root Mean Square Error (RMSE), Sum of Squares (SSE) and Chi-square (χ2). Also, effective diffusion coefficient (D) and activation energy (Ea) were calculated. The results showed that Hii, Law and Cloke’s model predicted the drying behavior during CTD. Activation energy of 37.5310588kJ/mol and 20.32657 kJ/mol was calculated for CHD and CTD methods respectively. The best mathematical model for drying a thin layer of pumpkin by CTD and CHD method was proposed Hii, Law and Cloke’s model.

کلیدواژه‌ها English

Convective hot air
Pumpkin
Kinetic Modeling
Cast tape drying
Thin layer drying
[1] Gliemmo, M.F., Latorre, M.E., Gerschenson, L.N. and Campos, C.A. 2009. Color stability of pumpkin (Cucurbita moschata, Duchesne ex Poiret) puree during storage at room temperature: Effect of pH, potassium sorbate, ascorbic acid and packaging material. LWT-Food Science and Technology, 42 (1): 196-201.
[2] Yadav, M., S. Jain, R. Tomar, G.B.K.S. Prasad, and H. Yadav. 2010. Medicinal and biological potential of pumpkin: An updated review. Nutr. Res. Rev. 23(2): 184–190.
[3]‌ Cruz, R.C.B., C.D. Meurer, E.J. Silva, C. Schaefer, A.R.S. Santos, A. Bella Cruz, and V.
C.‌Filho. 2006. Toxicity evaluation of Cucurbitamaxima. Seed extract in Mice. Pharm.
Biol. 44(4): 301–303.
[4] Barakat, L.A., and R.R. Mahmoud. 2011. The antiatherogenic, renal protective and immunomodulatory effects of purslane, pumpkin and flax seeds on hypercholesterolemic rats. North Am. J. Med. Sci 3(9): 411–417.
[5] Patel, S. 2013. Pumpkin (Cucurbita sp.) seeds as nutraceutic: A review on status quo and
scopes. Med. J. Nutr. Metab. 6(3):183–189.
[6] Mythili, P. and T. Kavitha. 2017. Overview on Cucurbita maxima seed. J. Dent. Med. Sci. 16 (3):29–33.
[7] Unachukwu, M.N., C. Nwakanma, and J. Ekuma. 2018. Evaluation of antimicrobial activities of fluted pumpkin leaf extract (Telfairia occidentalis) against selected pathogenic bacteria using standard drug. Int. J. Curr. Microbiol. Appl. Sci. 3(11): 521–527.
[8] Dhiman, A., N. Vidiya, A. Surekha, and R. Preethi. 2017. Studies on development and storage stability of dehydrated pumpkin based instant soup mix. J. Appl. Nat. Sci. 9(3):1815–1820.
[9] Sharma, P., Kaur, G., Kehinde, B. A., Chhikara, N., Panghal, A. & Kaur G. 2020. Pharmacological and biomedical uses of extracts of pumpkin and its relatives and applications in the food industry: a review, International Journal of Vegetable Science. 26 (1): 79-95.

[10] FAO. 2019. Statistical Database. Available at: www.fao.org/faostat/en/#data/QC.
[11] Barrozo, M.A.S., Souza, A.M., Costa, S.M., Murata, V.V. 2001.Simultaneous heat and mass transfer between air and soybean seeds in a concurrent moving bed. International Journal of Food Science and Technology 36 (4): 393–399.
[12] Figiel, A. 2010. Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering. 98: 461–470.
[13] Nindo, C. I., and J. Tang. 2007. Refractance window dehydration technology: A novel contact drying method. Drying Technology, 25(1): 37–48.
[14]‌‌ Jafari, S.M., Azizi, D., Mirzaei, H. and Dehnad, D. 2016. Comparing quality characteristics of oven dried and Refractance Window dried kiwifruits. Journal of Food Processing and Preservation, 40(3): 362-372.
[15] Caparino, O. A., Sablani, S. S., Tang, J., Syamaladevi, R. M. & Nindo, C. I. 2013. Water Sorption, Glass Transition, and Microstructures of Refractance Window– and Freeze-Dried Mango (Philippine “Carabao” Var.) Powder, Drying Technology. 31:16, 1969-1978.
[16] Ortiz-Jerez, M.J. & Ochoa-Martínez, C.I. 2015. Heat Transfer Mechanisms in Conductive Hydro-Drying of Pumpkin (Cucurbita maxima) Pieces, Drying Technology, 33 (8): 965 972.
[17]‌‌ Hernández-Santos, Betsabé., Martínez-Sánchez, Cecilia E., TorrucoUco, Juan G., Rodríguez-Miranda, Jesús, Ruiz-López, Irving I., Vajando-Anaya, Edgar S., CarmonaGarcía, Roselis, & Herman-Lara, Erasmo. 2015. Evaluation of physical and chemical properties of carrots dried by Refractance Window drying, Drying Technology, 34 (12): 1414-1422.
[18] Babetto, A.C., Freire., F.B., Barrozo, M.A.S. and Freire, J.T. 2011. Drying of garlic slices: Kinetics and nonlinearity measures for selecting the best equilibrium moisture content equation. Journal of Food Engineering 107:347–352.
[19] Krokida, M.K., V.T. Karathanos, Z.B. Maroulis and D. Marinos-Kouris. 2003. Drying kinetics of some vegetables. Journal of Food Engineering. 59: 391-403.
[20] Chen, D., Zheng,Y. and Xifeng Zhu. 2012. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition. Bioresource Technology 107:451–455.
[21] Akpinar, E.K. 2006. Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of Food Engineering 73,75–84.
[22] Dermesonlouoglou, E.K., Giannakourou, M.C. & Taoukis,P.S. 2007.Kinetic modeling of the degradation of quality of osmo-dehydrofrozen tomatoes during storage. Food Chemistry 103: 985–993.

[23] Al-Harahsheh, M, Al-Muhtaseb, A.H. and Magee, T.R.A. 2009. Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration. Chemical Engineering and Processing, 48: 524–531.
[24]‌ Evin, D. 2012. Thin layer drying kinetics of Gundelia tournefortii L. Food and Bioproducts processing. 9 0: 323–332.
[25] Kashaninejad, M., Mortazavi, A., Safekordi, A., Tabil, L.G. 2007. Thin-layer drying characteristics and modeling of pistachio nuts, Journal of Food Engineering. 78:1: 98-108.
[26] Chong, C.H., Lim Law, C., Cloke, M., Lik Hii, C., Chuah Abdullah, L., Wan Daud, W.R. 2008. Drying kinetics and product quality of dried Chempedakc. Journal of Food Engineering. 88: 522–527.
[27] Doymaz, I., and Ismail, O. 2011. Drying characteristics of sweet cherry. food and bioproducts processing. 8 9: 31–38.
[28] Therdthai, N., & Zhou, W. 2009. Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen).Journal of Food Engineering. 91: 482–489.
[29] Nindo, C. I. and Tang, J. 2007. Refractance window dehydration technology: a novel contact drying method. Drying Technology. 25: 37–48.
[30 ] Ochoa-Martínez, C. I., Quintero, P. T., Ayala, A. A., & Ortiz, M. J. 2012. Drying characteristics of mango slices using the Refractance Window™ technique. Journal of Food Engineering. 109(1): 69-75.
[31] Amer, B. M. A. 2011. Thin layer drying kinetics of mango puree in refractance window drying system. Misr J. Ag. Eng., 28(4): 1021 – 1039.
[32] Rajoriya, D., Bhavya, M.L, Hebbar, H.U. 2021. Impact of process parameters on drying behaviour, mass transfer and quality profile of refractance window dried banana puree, LWT.145:111330.
[33 ] Rajoriya, D., Shewale, S. R., Bhavya, M. L., & Hebbar, H. U. 2020. Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innovative Food Science & Emerging Technologies. 66: 102530.
[34] Puente-Díaz, L., Spolmann, O., Nocetti, D., Zura-Bravo, L., & Lemus-Mondaca, R. 2020. Effects of Infrared-Assisted Refractance Window™ Drying on the drying kinetics, microstructure, and color of physalis fruit purée. Foods, 9(3):1-18.
[35] Nindo, C. I, Powers, J. R. and Tang, J. 2011. Transactions of the ASABE. 53(4):1193-1200.
[36] Akinola, A.A., Talabi, O.G. and Ezeorah, S. N. 2018. Effective Moisture Diffusivity and Activation Energy Estimation of Cucumber Fruit Slices Using a Refractance Window Dryer. The Journal of the Association of Professional Engineers of Trinidad and Tobago. 46(2): 11-16.
[37] Shrivastav, S., Ganorkar, P.M., Prajapati, K. M. and Patel, D. B. 2021. Drying kinetics, heat quantities, and physiochemical characteristics of strawberry puree by Refractance Window drying system. J Food Process Eng. 13776.