تاثیراسید اولئیک و موم زنبور عسل بر عملکرد فیلم های بسته بندی امولسیونی بر پایه پودر نرم گندم

نویسندگان
گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
چکیده
افزایش آگاهی مصرف کنندگان و از طرفی مشکلات زیست محیطی ناشی از مصرف پلاستیک سبب گسترش فناوری­های جدید با هدف بهبود خواص فیزیکی و مکانیکی فیلم­های زیستی نظیر تولید فیلم­های امولســیونی گردیده است. پودر نرم گندم محصولی حاصل از طبقه­بندی آرد تحت سیستم پنوماتیکمی­باشد . هدف از این پژوهش تولید فیلم امولسیونی بر پایه پودر نرم گندم، به‌عنوان ماده اولیه جدید و ارزان قیمت و بررسی اثر دو نوع لیپید (اسید اولئیک و موم زنبورعسل) در غلظت­های مختلف (5، 10 و 15 درصد) بر ویژگی­های فیزیکی و مکانیکی فیلم­های امولسیونی بود. نتایج این تحقیق نشان داد که با افزایش غلظت لیپید، ضخامت، کدورت و استحکام کششی افزایش هم­چنین رطوبت، کشش‌پذیری و حلالیت در برابر آب نسبت به فیلم شاهد کاهش یافت. مقایسه تاثیر غلظت دو نوع لیپید نشان داد که افزایش غلظت موم زنبورعسل در مقایسه با اسید اولئیک تاثیر بیشتری بر افزایش کدورت فیلم امولسیون داشت. نفوذ­پذیری نسبت به بخار آب فیلم امولسیونی حاوی 5 درصد اسید اولئیک (gm-1s-1Pa-110-10×82/1) در مقایسه با فیلم حاوی موم زنبورعسل در غلظت مشابه (gm-1s-1Pa-110-10×30/2) کم­تر بود. هم­چنین تصاویر میکروسکوپ الکترونی نشان داد سطح فیلم حاوی اسید اولئیک 10 درصد، در مقایسه با نمونه شاهد سطحی صاف­تر و یکنواخت با منافذ کوچک­تر بود که تایید کننده نتایج نفوذپذیری نسبت بخار آب بود. نتایج این تحقیق بیانگر قابلیت خوب پودر نرم گندم در تهیه فیلم امولسیونی حاوی لیپید اسید اولئیک و موم زنبور عسل جهت استفاده در بسته بندی مواد غذایی بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation the effect of Oleic acid and Beeswax on physical and functional properties of emulsion films based on fine wheat powder

نویسندگان English

Mahboobeh Kashiri
meysam Dehghani
Yahya Maghsoudlou
Mohammad Ghorbani
Hoda Shahiri Tabarestani
mahboobeh Hassani
Department of Food Science and TechnologyGorgan University of Agricultural Sciences  and  Natural Resources
چکیده English

Fine wheat powder is a natural polymer that obtained from of pneumatic process in which light particles are not allowed to be used in bakeries despite the presence of nutrients and lead to reduced quality of flour. The purpose of this study was production of emulsion film based on wheat soft powder as a new and inexpensive raw material and investigation of two types lipids (oleic acid and beeswax) at different concentrations (5, 10 and 15%) on physical and mechanical properties of emulsion films. The results showed that by increasing lipid concentration, thickness, turbidity and tensile strength increased. But moisture decreased and elongation at break decreased as compared the control film. Comparison between the lipid concentration showed that increasing the concentration of beeswax compared to oleic acid had more effect on increasing the turbidity value of the emulsion film. Water vapor permeability of emulsion film containing 5% oleic acid (1.82×10-10 g-1m-1s-1pa-1) was lower as compared beeswax film at similar concentrations (2.30×10-10 g-1m-1s-1pa-1). In addition, scanning electron microscopy images showed the surface of 10% oleic acid film was smooth and uniform with smaller pores as compared the control sample which confirm the water vapor permeability results. The results of this study indicated the good capability of fine wheat powder in preparation of emulsion film containing oleic acid and beeswax application in food packaging.

کلیدواژه‌ها English

Fine wheat powder
Oleic acid
Beeswax
Emulsion film
Petersen, K., et al., Potential of biobased materials for food packaging. Trends in Food Science & Technology, 1999. 10(2): p. 52-68.
2. Tapia‐Blácido, D., et al., Contribution of the starch, protein, and lipid fractions to the physical, thermal, and structural properties of amaranth (Amaranthus caudatus) flour films. Journal of Food Science, 2007. 72(5): p. E293-E300.
3. Peyromousavi, M., Kashiri, M., Maghsoudlou, Y., Komeiri, M & Alami, M, Investigation the effect of type and plasticizer concentration on characteristic of novel biodegradable film based fine wheat powder. Iranian Journal of Food Science and Technology, 1396. 15(85): p. 33-47.
4. Delcour, J.A., & Hoseney, R.C. (2010). Principles of cereal science and technology. American Association of Cereal Chemists. Inc., St. Paul, 1-270.
5. Zhang, Y., B.K. Simpson, and M.-J. Dumont, Effect of beeswax and carnauba wax addition on properties of gelatin films: A comparative study. Food Bioscience, 2018. 26: p. 88-95.
6. Boromand, A., Emamjomeh, Z & Razavi, H, Investigation the effect of oleic and Stearic acids on mechanical, permeability and microstructure properties of sodium caseinate film. Iranian Journal of Biosystems Engineering, 1389. 41(2): p. 185-193.
7. Jiménez, A., et al., Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 2012. 26(1): p. 302-310.
8. Ma, Q., et al., Tara gum edible film incorporated with oleic acid. Food Hydrocolloids, 2016. 56: p. 127-133.
9. Fabra, M.J., P. Talens, and A. Chiralt, Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid–beeswax mixtures. Journal of Food Engineering, 2008. 85(3): p. 393-400.
10. Ghasemlou, M., et al., Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International Journal of Biological Macromolecules, 2011. 49(3): p. 378-384.
11. Alkan, D., et al., Development of flexible antimicrobial packaging materials against Campylobacter jejuni by incorporation of gallic acid into zein-based films. Journal of Agricultural and Food Chemistry, 2011. 59(20): p. 11003-11010.
12. Fabra, M.J., P. Talens, and A. Chiralt, Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 2009. 23(3): p. 676-683.
13. Talens, P. and J.M. Krochta, Plasticizing effects of beeswax and carnauba wax on tensile and water vapor permeability properties of whey protein films. Journal of Food Science, 2005. 70(3): p. E239-E243.
14. Navarro-Tarazaga, M.L., R. Sothornvit, and M.a.B. Pérez-Gago, Effect of plasticizer type and amount on hydroxypropyl methylcellulose− beeswax edible film properties and postharvest quality of coated plums (cv. Angeleno). Journal of Agricultural and Food Chemistry, 2008. 56(20): p. 9502-9509.
15. Khanzadi, M., et al., Physical and mechanical properties in biodegradable films of whey protein concentrate–pullulan by application of beeswax. Carbohydrate polymers, 2015. 118: p. 24-29.
16. Hromiš, N.M., et al., Optimization of chitosan biofilm properties by addition of caraway essential oil and beeswax. Journal of Food Engineering, 2015. 158: p. 86-93.
17. AACC, Approved Metods of the American Association of Creal Chemists, 10 th Ed., . American Association of Creal Chemists, St. Paul, MN, 2000. 2.
18. AOAC, Association of Official Analytical Chemist:. 2005, Official metods of analysis (18th ed.): Washington,DC.
19. Sabaghi, M., Y. Maghsoudlou, and P. Habibi, Enhancing structural properties and antioxidant activity of kefiran films by chitosan addition. Food Structure, 2015. 5: p. 66-71.
20. Tunç, S. and O. Duman, Thermodynamic properties and moisture adsorption isotherms of cottonseed protein isolate and different forms of cottonseed samples. Journal of Food Engineering, 2007. 81(1): p. 133-143.
21. ASTM, Standard test methods for water vapor transmission of materials E 96-80. Annual book of ASTM standards, 1989.
22. ASTM, D., 882-01, Standard test method for tensile properties of thin plastic sheeting. Annual Book of ASTM Standards, Designation D882-01, American Society for Testing Materials, Philadelphia, PA, 2001.
23. Ghanbarzadeh, B. and H. Almasi, Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 2011. 48(1): p. 44-49.
24. Dias, A.B., et al., Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 2010. 51(2): p. 213-219.
25. Chen, G., B. Zhang, and J. Zhao, Dispersion process and effect of oleic acid on properties of cellulose sulfate-oleic acid composite film. Materials, 2015. 8(5): p. 2346-2360.
26. Cao, N., X. Yang, and Y. Fu, Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids, 2009. 23(3): p. 729-735.
27. Wang, Z., et al., The effects of ultrasonic/microwave assisted treatment on the water vapor barrier properties of soybean protein isolate-based oleic acid/stearic acid blend edible films. Food Hydrocolloids, 2014. 35: p. 51-58.
28. Velickova, E., et al., Characterization of multilayered and composite edible films from chitosan and beeswax. Food Science and Technology International, 2015. 21(2): p. 83-93.
29. Masamba, K., et al., Effect of drying temperature and pH alteration on mechanical and water barrier properties of transglutaminase cross linked zein–oleic acid composite films. LWT-Food Science and Technology, 2016. 65: p. 518-531.
30. Klangmuang, P. and R. Sothornvit, Combination of beeswax and nanoclay on barriers, sorption isotherm and mechanical properties of hydroxypropyl methylcellulose-based composite films. LWT-Food Science and Technology, 2016. 65: p. 222-227.
31. Vlacha, M., et al., On the efficiency of oleic acid as plasticizer of chitosan/clay nanocomposites and its role on thermo-mechanical, barrier and antimicrobial properties–Comparison with glycerol. Food Hydrocolloids, 2016. 57: p. 10-19.
32. Indrarti, L. Preparation and characterization of bacterial cellulose-beeswax films. in IOP Conference Series: Earth and Environmental Science. 2018. IOP Publishing.
33. Péroval, C., et al., Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. Journal of Agricultural and Food Chemistry, 2002. 50(14): p. 3977-3983.
34. Almeida, C.B.d., et al., Microstructure and thermal and functional properties of biodegradable films produced using zein. Polímeros, 2018(AHEAD): p. 0-0.
35. Reis, M.O., et al., Biodegradable trays of thermoplastic starch/poly (lactic acid) coated with beeswax. Industrial Crops and Products, 2018. 112: p. 481-487.
36. Han, J., et al., Physical and mechanical properties of pea starch edible films containing beeswax emulsions. Journal of Food Science, 2006. 71(6): p. E290-E296.
37. Monedero, F.M., et al., Effect of oleic acid–beeswax mixtures on mechanical, optical and water barrier properties of soy protein isolate based films. Journal of Food Engineering, 2009. 91(4): p. 509-515.
38. Cecchini, J.P., et al., Development of edible films obtained from submicron emulsions based on whey protein concentrate, oil/beeswax and brea gum. Food Science and Technology International, 2017. 23(4): p. 371-381.