[1] FitzGerald, R; Dermiki, M., 2020, Physicochemical and gelling properties of whey protein hydrolysates generated at 5 and 50 °C using Alcalase® and Neutrase®, effect of total solids and incubation time, International Dairy Journal, 110, 104792.
[2] Montone, C. M., Capriotti, A, L., Cavaliere, Chiara. La Barbera, Giorgia., Piovesana, S., Chiozzi, R. Z., Lagana, Aldo. 2018, Characterization of antioxidant and angiotensin-converting enzyme inhibitory peptides derived from cauliflower by-products by multidimensional liquid chromatography and bioinformatics, Journal of Functional Foods, 44, 40-47.
[3] Peng, J., Zheng, L., Yu, Huichao., Wei, Hongkui., Xing, Qian., Zou, Yi., Zhou, Yuanfei. 2018. Antioxidative peptides of hydrolysate prepared from fish skin gelatin using ginger protease activate antioxidant response element-mediated gene transcription in IPEC-J2 cells. Journal of Functional Foods. 51, 104-112.
[4] Neves ,A. C, P.A. Harnedy, M.B.O. Keeffe, J. RichardBioactive peptides from Atlantic Salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory , and antioxidant. 2017. Food Chemistry. 218(1), 396-405.
[5] Feng, L.; Wang, X.; Peng, F.; Liao, J.; Nai, Y.; Lei, H.; Li, M.; Xu, H. Walnut Protein Hydrolysates Play a Protective Role on Neurotoxicity Induced by D-Galactose and Aluminum Chloride in Mice. Molecules 2018, 23, 2308.
[6] Chen, L., Eckert, E, Han, J., Swallow, K., Tian, Z., Parra, M. 2019. Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. 96 (4).
[7] Su, Yujie., Gao, Y., Li, J., Chang, C., Wang, Chenying., Yang, Yanjun. 2019. Effect of enzymatic hydrolysis on heat stability and emulsifying properties of egg yolk. Food Hydrocolloids. 97, 105224.
[8] Diaz, M., Decker, E. A., 2004. Antioxidant Mechanisms of Caseinophosphopeptides and Casein Hydrolysates and Their Application in Ground Beef. J. Agric. Food. Chem. 52(26), 8208-8213.
[9] Shahidi, F., Ambigaipalan, P. 2017. Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. Journal of Functional Foods. 34, 7-17.
[10] Bernardi, D.M., Deparis, L.D., Dieterich, F., Silva, F.G.D., Boscolo, W,R. 2016. Production of hydrolysate from processed Nile tilapia (Oreochromis niloticus) residues and assessment of its antioxidant activity. Food Science and Technology. 34(6), 709-716.
[11] Timon, M., Andres, Ana. Otte, Jeanette, Petron, Maria. 2019, Antioxidant peptides (<3 kDa) identified on hard cow milk cheese with rennet from different origin. Food Research International. 120, 643-649.
[12] Piovesana, S., Capriotti, A.L., Cavaliere, C. et al. 2018. Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Anal Bioanal Chem 410, 3425–3444.
[13] Moritani, C., Kawakami, K., Fujita, A., Shimoda, H., Hatanka, T. Tsuboi, S. 2018. Isolation of activating factors of serotonin N-acetyltransferase from rice peptides. Journal of Functional Foods. 41, 148-154.
[14] Wu, Jianping, Ding, X. 2002. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. 35(4), 367-375.
[15] Aluko, R,E., Pownall, T,L., Udenigwe, C. 2010. Amino Acid Composition and Antioxidant Properties of Pea Seed (Pisum sativum L.) Enzymatic Protein Hydrolysate Fractions. J. Agric. Food. Chem. 58(8), 4712-4718.
[16] Shand, P.J., Marambe, P.W., Wanasundara, J.P.D. 2008. An In-vitro Investigation of Selected Biological Activities of Hydrolysed Flaxseed (Linum usitatissimum L.) Proteins. 85, 1155-1164.
[17] Farahmandfar R, Ramezanizadeh MH. 2018. Oxidative stability of canola oil by Biarum bovei bioactive components during storage at ambient temperature. Food Sci Nutr. 6:342–347.
[18] Gheisari, H.R., Golkari, H., Shekarforoush, S,S., Aminlari, M., Raeisi, M. 2017. Possibility of Biarum carduchcorum application as vegetable rennet in production of Iranian white cheese. Journal of Food Hygiene, 7, 27.
[19] Shekarforoush, S,S., Raeisi, M., Aminlari, M., Gheisari, H,R., Golkari, H. 2017. Study on physico-chemical properties of emulsion type sausage produced with aqueous extract of Biarum carduchcorum tenderizied meat. Journal of Food Hygiene, 7, 26.
[20] Wang, W., Liu, Q.J., Cui, H. (2007). Rapid desalting and protein recovery with phenol after ammonium sulfate fractionation. Electrophoresis, 28 (14): 2358-60.
[21] Homaei, A., Etemadipour, R. 2015. Improving the activity and stability of actinidin by immobilization ongold nanorods. International Journal of Biological Macromolecules. 72, 1176-1181.
[22] Rezaei, Karamatollah, Alavi, F., Jamshidian, Mjid. 2019. Applying native proteases from melon to hydrolyze kilka fish proteins (Clupeonella cultriventris caspia) compared to commercial enzyme Alcalase. 314-322.
[23] Popineau, Yves., Huchet, Blandine, Larre, Colette and Berot, Serge. 2002. Foaming and Emulsifying Properties of Fractions of Gluten Peptides Obtained by Limited Enzymatic Hydrolysis and Ultrafiltration. Journal of Cereal Science. 35, 327-335.
[24] Tsumara, K., Saito, T., Tsuge, K., Ashida, H., Kugimiya, W., & Inouye, K. 2005. Functional properties of soy protein hydrolysates obtained by selective proteolysis. Lebensmittel-Wissenschaft & Technologie-Food Science and Technology, 38, 255–261.
[25] Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: Evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26, 716–723.
[26] Shahidi, F., Han, X. Q., & Synowiecki, J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry, 53, 285–293.
[27] Wang, B., Yu, C. G., Luo, H. Y., Qu, Y. L., & Yang, L. Y. (2010). Studies on the preparation and antioxidant properties of enzymatic hydrolysate from Dasyatis akajei by papain. Food Science and Technology International, 10, 113–118.
[28] Gimenez, B., Aleman, A., Guillen, M.C. 2011. Antioxidant activity of several marine skin gelatins. Lwt- Food Science and Technology. 44(2), 407-413.
[29] Je, J.Y., Ahh, C.B., Jeon, Y.J., Kim, Y. T. 2012. Angiotensin I converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by Alcalase hydrolysis. Process Biochemistry. 44(12), 2240-2245.
[30] Hashim, M.M., Mingsheng, D., Iqbal, MF and Xiaohong, C. (2011). Ginger rhizome as a potential source of milk coagulating cysteine protease. Journal of Phytochemistry, 72(6): 458-464.
[31] Chitpinityol, S. and Crabbe, M.J.C. (1998). Chymosin and aspartic proteinases. Journal of Food Chemistry, 61(4): 395-418.
[32] Kumar, A., Sharma, J., Mohanty, A.K., Grover, S. and Batish, V.K. (2006). Purification and characterization of milk Clotting enzyme from goat (Capra hircus). 145(1): 108-113.
[33] Rahali, V., Chobert, J. M., Haertlé, T. and Guéguen, J., 2000. Emulsification of chemical and enzymatic hydrolysates of b-lactoglobulin: Characterization of the peptides adsorbed at the interface. Nahrung/Food, 44, 89–95.
[34] Chi, C. F., Cao, Z. H., Wang, B., Hu, F. Y., Li, Z. R., & Zhang, B. (2014). Antioxidant and functional properties of collagen hydrolysates from Spanish Mackerel skin as influenced by average molecular weight. Molecules, 19, 11211–11230.
[35] Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J., & He, H. (2018). Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease. Food Chemistry, 248, 346–352.
[36] Ngoh YY, Gan CY. 2016. Enzyme-assisted extraction and identification of antioxidative and α amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chemistry. 1(190), 331-337.
[37] Wang, C.; Tu, M.; Wu, D.; Chen, H.; Chen, C.; Wang, Z.; Jiang, L. Identification of an ACE-Inhibitory Peptide from Walnut Protein and Its Evaluation of the Inhibitory Mechanism. Int. J. Mol. Sci. 2018, 19, 1156.
[38] Cheung IW, Nakayama S, Hsu MN, Samaranayaka AG, Li-Chan EC. Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. J Agric Food Chem. 2009. 57(19) : 9234-42.
[39] Shai, Y. 2002. From innate immunity to denovo designed antimicrobial peptides. Curr Pharm Des. 8(9): 715-725.
[40] Taha, S.F., Mohamed, S.S., Wagdy, M.S., and Mohamed, F.G. 2013. Antioxidant and antimicrobial activities of enzymatic hydrolysis products from sunflower protein isolate. World Applied Sciences Journal. 21(5), 651-658.
[41] Théolier, J., Fliss, I., Jean, J., and Hammami, R. 2014. Antimicrobial peptides of dairy proteins: from fundamental to applications. Food Rev Int, 30(2): 134-154.
[42] Cheng, X., Tang, X., Wang, Q., and Mao, X.Y. 2013. Antibacterial effect and hydrophobicity of yak κ-casein hydrolysate and its fractions. Int Dairy J. 31 (2): 111-16.
[43] Pritchard, S.R., Phillips, M., and Kailasapathy, K. 2010. Identification of bioactive peptides in commercial Cheddar cheese. Food res int. 43(5): 1545-1548.
[44] Mahdabi, M., & Hosseini, S. S. P. (2018). A comparative study on some functional and antioxidant properties of kilka meat, fishmeal, and stick-water protein hydrolysates. Journal of Aquatic Food Product Technology, 27, 844–858.
[45] Chi, C., Hu, F., Li, Z., Wang, B., & Luo, H. (2016). Influence of different hydrolysis processes by trypsin on the physicochemical, antioxidant, and functional properties of collagen hydrolysates from Sphyrna lewini, Dasyatis akjei, and Raja porosa. Journal of Aquatic Food Product Technology, 25, 616–632.
[46] Alolod, L., Garner, A., Nuñal, N. S., Nillos, G., Mae, G., & Peralta, P. J. (2019). Bioactivity and functionality of gelatin hydrolysates from the skin of Oneknife Unicornfish (Naso thynnoides). Journal of Aquatic Food Product Technology, 28, 1013–1026.
[47] Viji, P., Phannendra, T. S., Jesmi, D., Rao, B. M., Das, D. P. H., & George, N. (2019). Functional and antioxidant properties or gelatin hydrolysates prepared from skin and
scale of Sole Fish. Journal of Aquatic Food Product Technology, 28, 976–986.
[48] Hajfathalian, M., Ghelichi, S., García, M. P. J., Moltke, S. A. D., & Jacobsen, C. (2018). Peptides: Production, bioactivity, functionality, and applications. Critical Review.
Food Science Nutrition, 58, 3097–3129.
[49] Razali, A. N., Amin, A. M., & Sarbon, N. M. (2015). Antioxidant activity and functional propierties of antioxidant activity and functional properties of fractionated cobia skin gelatin hydrolysate at different molecular weight. International Food Research Journal, 22, 651–660.
[50] Halim, N. R. A., Yusof, H. M., & Sarbon, N. M. (2016). Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends in Food Science and Technology, 51, 24–33.