تشخیص روغن زیتون آلوده به فلزات سنگین توسط سامانه سه الکترودی مبتنی بر ولتامتری چرخه ای

نویسندگان
1 دانشجوی دکتری، گروه مهندسی مکانیک بیوسیستم، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 2. استادیار، گروه مهندسی مکانیک بیوسیستم، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 استاد تمام، گروه مهندسی مکانیک بیوسیستم، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 دانشیار، دانشکده مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
چکیده
سیستم­های سه الکترودی، سیستم چشایی زبان انسان را شبیه سازی کرده و می تواند جهت بررسی کیفیت مواد غذایی استفاده گردد. حس چشایی یکی از حواس پنجگانه است و زبان مولکول های خاصی را شناسایی می کند. در سال های اخیر از سیستم­های سه الکترودی با آرایه ای از الکترودها جهت شناسایی مولکول های مختلف استفاده می شود. در این تحقیق از یک سامانه سه الکترودی مبتنی بر روش های ولتامتری با سه الکترود گرافیت (Pencil Graphite (PG))، صفحه چاپی (Screen Printed (SP)) و گلسی کربن (Glassy Carbon (GC)) جهت شناسایی فلزات سنگین (کادمیم، سرب، قلع و نیکل) در روغن خوراکی زیتون استفاده گردید. فلزات سنگین در سه غلظت 05/0، 1/0 و 25/0 ppm به روغن خوراکی افزوده شده و سپس خروجی دستگاه توسط روش کمومتریک طبقه بندی شد. بر اساس نتایج PCA، الکترود PG 96% واریانس بین داده ها در روغن های خوراکی زیتون را شامل می شود. همچنین الکترود SP 91% و GC نیز 100% واریانس بین داده ها را در روغن زیتون را شناسایی نموده است. در ادامه روش SVM نیز توانایی بالایی در طبقه بندی فلزات سنگین در روغن های خوراکی از خود نشان داده است. همچنین روش PLS توانست 99% داده ها در روغن زیتون را پیش بینی نماید. در نهایت با توجه به نتایج می توان گفت سامانه سیستم­ سه الکترودی ساخته شده دارای دقت بالایی در شناسایی فلزات سنگین در روغن های خوراکی است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Detection of olive oil contaminated with heavy metals using a three-electrode system based on the cyclic voltammetry

نویسندگان English

Hasan Kiani 1
Babak BEHESHTI 2
Ali Mohamad Borghei 3
Mohammad Hashem Rahmati 4
1 Ph.D. student, Department of Biosystems Engineering, Faculty of Agricultural Sciences and Food Industry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Assistant Professor, Department of Biosystems Engineering, Faculty of Agricultural Sciences and Food Industry, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Professor, Department of Biosystems Engineering, Faculty of Agricultural Sciences and Food Industry, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Associate Professor, Department of Biosystem Mechanical Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده English

Three electrode system simulates the human tongue taste system and can be used to assess the quality of food. The sense of taste is one of the five senses and tongue recognizes certain molecules. In recent years, three electrode system with an array of electrodes has been used to identify various molecules. In this research, a three electrode system is used based on voltammetric methods with three graphite electrodes (Pencil Graphite (PG)), Screen Printed (SP) and Glassy Carbon (GC) to identify heavy metals (cadmium , Lead, tin and nickel) in olive oil. Heavy metals are added to the edible oil in three concentrations of 0.05, 0.1 and 0.25 ppm and then the output of the device is classified by chemometric method. According to PCA results, the PG electrode contains 96% of the variance between the data in olive edible oils. Also, SP electrode contains 91% and GC contains 100% of the variance between the data in olive oil. The SVM method showed a high ability to classify heavy metals in edible oils. Also, The PLS method was also able to predict 99% of the data in olive oil for all electrodes. Finally, according to the results, it can be said that the built-in three electrode system has a high accuracy in identifying heavy metals in edible oils.

کلیدواژه‌ها English

Three electrode system
Heavy metals
Edible Oil
Cyclic Voltammetry
[1] Semenov, V., Volkov, S., Khaydukova, M., Fedorov, A., Lisitsyna, I., Kirsanov, D. and Legin, A., 2019. Determination of three quality parameters in vegetable oils using potentiometric e-tongue. Journal of Food Composition and Analysis, 75, pp.75-80.
[2] Kaushal, P. and Mudhalwadkar, R., 2020. Stationary wavelet singular entropy based electronic tongue for classification of milk. Transactions of the Institute of Measurement and Control, 42(4), pp.870-879.
[3] Geană, E.I., Ciucure, C.T., Artem, V. and Apetrei, C., 2020. Wine varietal discrimination and classification using a voltammetric sensor array based on modified screen-printed electrodes in conjunction with chemometric analysis. Microchemical Journal, p.105451.
[4] Elamine, Y., Inácio, P.M., Lyoussi, B., Anjos, O., Estevinho, L.M., da Graça Miguel, M. and Gomes, H.L., 2019. Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination. Sensors and Actuators B: Chemical, 285, pp.24-33.
[5] de Morais, T.C.B., Rodrigues, D.R., Souto, U.T.D.C.P. and Lemos, S.G., 2019. A simple voltammetric electronic tongue for the analysis of coffee adulterations. Food chemistry, 273, pp.31-38.
[6] Pérez-Ràfols, C., Serrano, N., Ariño, C., Esteban, M. and Díaz-Cruz, J.M., 2019. Voltammetric electronic tongues in food analysis. Sensors, 19(19), p.4261.
[7] Pauliuc, D., Dranca, F. and Oroian, M., 2020. Raspberry, Rape, Thyme, Sunflower and Mint Honeys Authentication Using Voltammetric Tongue. Sensors, 20(9), p.2565.
[8] Cabral, F.P., Bergamo, B.B., Dantas, C.A., Riul Jr, A. and Giacometti, J.A., 2009. Impedance e-tongue instrument for rapid liquid assessment. Review of Scientific Instruments, 80(2), p.026107.
[9] Sànchez, J. and del Valle, M., 2001. A New Potentiometric Photocurable Membrane Selectiveto Anionic Surfactants. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 13(6), pp.471-476.
[10] Szyczewski, P., Frankowski, M., Zioła-Frankowska, A., Siepak, J., Szyczewski, T. and Piotrowski, P., 2016. A comparative study of the content of heavy metals in oils: linseed oil, rapeseed oil and soybean oil in technological production processes. Archives of Environmental Protection, 42(3), pp.37-40.
[11] Rizwan, M., Ali, S., Abbas, F., Adrees, M., Zia-ur-Rehman, M., Farid, M., Gill, R.A. and Ali, B., 2017. Role of organic and inorganic amendments in alleviating heavy metal stress in oil seed crops. Oil seed crops: yield and adaptations under environmental stress, 12, pp.224-235.
[12] Lajayer, B.A., Ghorbanpour, M. and Nikabadi, S., 2017. Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicology and Environmental Safety, 145, pp.377-390.
[13] Pehlivan, E., Arslan, G., Gode, F., Altun, T. and Özcan, M.M., 2008. Determination of some inorganic metals in edible vegetable oils by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Grasas y aceites, 59(3), pp.239-244.
[14] Lima, H.R.S., da Silva, J.S., de Oliveira Farias, E.A., Teixeira, P.R.S., Eiras, C. and Nunes, L.C.C., 2018. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosensors and Bioelectronics, 108, pp.27-37.
[15] Ahn, S.R., An, J.H., Jang, I.H., Na, W., Yang, H., Cho, K.H., Lee, S.H., Song, H.S., Jang, J. and Park, T.H., 2018. High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection. Biosensors and Bioelectronics, 117, pp.628-636.
[16] Wang, W. and Liu, Y., 2019. Electronic tongue for food sensory evaluation. In Evaluation technologies for food quality (pp. 23-36). Woodhead Publishing.
[17] Oroian, M. and Ropciuc, S., 2019. Romanian honey authentication using voltammetric electronic tongue. Correlation of voltammetric data with physico-chemical parameters and phenolic compounds. Computers and Electronics in Agriculture, 157, pp.371-379.
[18] Xu, M., Wang, J. and Zhu, L., 2019. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food chemistry, 289, pp.482-489.
[19] Chen, X., Xu, Y., Meng, L., Chen, X., Yuan, L., Cai, Q., Shi, W. and Huang, G., 2020. Non-parametric partial least squares–discriminant analysis model based on sum of ranking difference algorithm for tea grade identification using electronic tongue data identify tea grade using e-tongue data. Sensors and Actuators B: Chemical, p.127924.
[20] Baldo, M.A., Oliveri, P., Fabris, S., Malegori, C. and Daniele, S., 2019. Fast determination of extra-virgin olive oil acidity by voltammetry and Partial Least Squares regression. Analytica chimica acta, 1056, pp.7-15.
[21] Tahri, K., Duarte, A. A., Carvalho, G., Ribeiro, P. A., da Silva, M. G., Mendes, D., ... & Bouchikhi, B. (2018). Distinguishment, identification and aroma compound quantification of Portuguese olive oils based on physicochemical attributes, HS‐GC/MS analysis and voltammetric electronic tongue. Journal of the Science of Food and Agriculture, 98(2), 681-690.
[22] Cetó, X., & Pérez, S. (2020). Voltammetric electronic tongue for vinegar fingerprinting. Talanta, 219, 121253.
[23] Tian, X., Wang, J., Ma, Z., Li, M., & Wei, Z. (2019). Combination of an E-Nose and an E-Tongue for Adulteration Detection of Minced Mutton Mixed with Pork. Journal of Food Quality, 2019.
[24] Men, H., Chen, D., Zhang, X., Liu, J., & Ning, K. (2014). Data fusion of electronic nose and electronic tongue for detection of mixed edible-oil. Journal of Sensors, 2014.
[25] Haddi, Z., Alami, H., El Bari, N., Tounsi, M., Barhoumi, H., Maaref, A., ... & Bouchikhi, B. E. N. A. C. H. I. R. (2013). Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles. Food Research International, 54(2), 1488-1498.
[26] Oliveri, P., Baldo, M. A., Daniele, S., & Forina, M. (2009). Development of a voltammetric electronic tongue for discrimination of edible oils. Analytical and bioanalytical chemistry, 395(4), 1135-1143.
[27] Polshin, E., Rudnitskaya, A., Kirsanov, D., Legin, A., Saison, D., Delvaux, F., ... & Lammertyn, J. (2010). Electronic tongue as a screening tool for rapid analysis of beer. Talanta, 81(1-2), 88-94.