[1] Waninge, R., Kalda, E., Paulsson, M., Nylander, T., & Bergenståhl, B. (2004). Cryo-TEM of isolated milk fat globule membrane structures in cream. Physical Chemistry Chemical Physics, 6(7): 1518-1523.
[2] Gallier, S., Gragson, D., Jiménez-Flores, R. and Everett, D., (2010). Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. Journal of Agricultural and Food Chemistry, 58(7): 4250-4257.
[3] BeMiller, J. N., & Whistler, R. L. (Eds.). (2012). Industrial gums: Polysaccharides and Their Derivatives. Academic Press.
[4] De Jong, S., & van de Velde, F. (2007). Charge density of polysaccharide controls microstructure and large deformation properties of mixed gels. Food Hydrocolloids, 21(7): 1172-1187.
[5] Girard, M., Turgeon, S. L., & Gauthier, S. F. (2002). Interbiopolymer complexing between β-lactoglobulin and low-and high-methylated pectin measured by potentiometric titration and ultrafiltration. Food Hydrocolloids, 16(6): 585-591.
[6] Maroziene, A., & De Kruif, C. G. (2000). Interaction of pectin and casein micelles. Food Hydrocolloids, 14(4): 391-394.
[7] Ganzevles, R. A., van Vliet, T., Stuart, M. A. C., & de Jongh, H. H. (2007). Manipulation of adsorption behaviour at liquid interfaces by changing protein–polysaccharide electrostatic interactions. In Food Colloids (pp. 195-208).
[8] Goh, K. K., Teo, A., Sarkar, A., & Singh, H. (2020). Milk protein-polysaccharide interactions. In Milk proteins (pp. 499-535). Academic Press.
[9] Zhao, Q., Zhao, M., Yang, B. and Cui, C., (2009). Effect of xanthan gum on the physical properties and textural characteristics of whipped cream. Food Chemistry, 116(3): 624-628.
[10] Zhao, Q., Zhao, M., Li, J., Yang, B., Su, G., Cui, C., & Jiang, Y. (2009). Effect of hydroxypropyl methylcellulose on the textural and whipping properties of whipped cream. Food Hydrocolloids, 23(8), 2168-2173.
[11] Ziaeifar, L., Shahi, M.L.M., Salami, M. and Askari, G.R., (2018). Effect of casein and inulin addition on physico-chemical characteristics of low fat camel dairy cream. International Journal of Biological Macromolecules, 117, 858-862.
[12] Farahmandfar, R., Asnaashari, M., Taheri, A. and Rad, T.K., (2019). Flow behavior, viscoelastic, textural and foaming characterization of whipped cream: Influence of Lallemantia royleana seed, Salvia macrosiphon seed and carrageenan gums. International Journal of Biological Macromolecules, 121: 609-615.
[13] Ma, Y., & Barbano, D. M. (2003). Effect of temperature of CO2 injection on the pH and freezing point of milks and creams. Journal of Dairy Science, 86(5), 1578-1589.
[14] AOAC (Association of Official Analytical Chemists). (2005). Official methods of analysis of the Association of Analytical Chemists International.
[15] Adriana, B. and Andrzej, B., (2019). Comparison of Physical and Functional Properties of Whipping Cream and Whipping Cream Analogue. Food Scince and Nutrition Research, 2(3): 1-7.
[16] Koocheki, A., Kadkhodaee, R., Mortazavi, S. A., Shahidi, F., & Taherian, A. R. (2009). Influence of Alyssum homolocarpum seed gum on the stability and flow properties of O/W emulsion prepared by high intensity ultrasound. Food Hydrocolloids, 23(8), 2416-2424.
[17] Gonzales, R.C. and Woods, R.E., (2002). Digital image processing.
[18] Ikeda, S., Foegeding, E. A., & Hagiwara, T. (1999). Rheological study on the fractal nature of the protein gel structure. Langmuir, 15(25), 8584-8589.
[19] De Jong, S., & van de Velde, F. (2007). Charge density of polysaccharide controls microstructure and large deformation properties of mixed gels. Food Hydrocolloids, 21(7): 1172-1187.
[20] Helgason, T., Awad, T. S., Kristbergsson, K., McClements, D. J., & Weiss, J. (2009). Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). Journal of Colloid and Interface Science, 334(1): 75-81
[21] Westesen, K., & Siekmann, B. (1997). Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. International Journal of Pharmaceutics, 151(1): 35-45.
[22] Lambert, S., Leconte, N., Blot, M., Rousseau, F., Robert, B., Camier, B., ... & Gésan-Guiziou, G.(2016). The lipid content and microstructure of industrial whole buttermilk and butter serum affect the efficiency of skimming. Food Research International, 83: 121-130.7
[23] Danov, K. D., Petsev, D. N., Denkov, N. D., Borwankar, R. (1993). Pair interaction energy between deformable drops and bubbles. The Journal of Chemical Physics, 99(9): 7179-7189.
[24] Petsev, D. N. (2000). Theoretical analysis of film thickness transition dynamics and coalescence of charged miniemulsion droplets. Langmuir, 16(5): 2093-2100.
[25] Petsev, D. N. (2004). Theory of emulsion flocculation. Emulsions: Structure, Stability and Interactions, 313-350.
[26] Kilpatrick, P. K. (2012). Water-in-crude oil emulsion stabilization: review and unanswered questions. Energy & Fuels, 26(7): 4017-4026.
[27] McClements, D. J. (2015). Food emulsions: principles, practices, and techniques. CRC press
[28] Sun, C. and Gunasekaran, S., (2009). Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids, 23(1): 165-174.
[29] Dickinson, E., (1998). Stability and rheological implications of electrostatic milk protein–polysaccharide interactions. Trends in Food Science & Technology, 9(10): 347-354.
[30] Hirt, S. and Jones, O.G., (2014). Effects of chloride, thiocyanate and sulphate salts on β‐lactoglobulin–pectin associative complexes. International Journal of Food Science & Technology, 49(11): 2391-2398.
[31] Weinbreck, F., De Vries, R., Schrooyen, P. and De Kruif, C.G., (2003). Complex coacervation of whey proteins and gum arabic. Biomacromolecules, 4(2): 293-303.
[32] Mekhloufi, G., Sanchez, C., Renard, D., Guillemin, S. and Hardy, J., (2005). pH-induced structural transitions during complexation and coacervation of β-lactoglobulin and acacia gum. Langmuir, 21(1): 386-394.
[33] Krzeminski, A., Prell, K.A., Weiss, J. and Hinrichs, J., (2014). Environmental response of pectin-stabilized whey protein aggregates. Food Hydrocolloids, 35: 332-340.
[34] Jones, O., Decker, E.A. and McClements, D.J., (2010). Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids, 24(2-3):239-248.
[35] Bayarri, M., Oulahal, N., Degraeve, P. and Gharsallaoui, A., (2014). Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging. Journal of Food Engineering, 131: 18-25.
[36] Eghbal, N., Degraeve, P., Oulahal, N., Yarmand, M.S., Mousavi, M.E. and Gharsallaoui, A., (2017). Low methoxyl pectin/sodium caseinate interactions and composite film formation at neutral pH. Food Hydrocolloids, 69,132-140.
[37] Kobori, T., Matsumoto, A. and Sugiyama, S., (2009). pH-Dependent interaction between sodium caseinate and xanthan gum. Carbohydrate Polymers, 75(4): 719-723.
[38] Seddari, S. and Moulai-Mostefa, N., (2015). Formulation and characterization of double emulsions stabilized by sodium caseinate–xanthan mixtures. effect of ph and biopolymer concentration. Journal of Dispersion Science and Technology, 36(1): 51-60.
[39] Gromer, A., Penfold, R., Gunning, A.P., Kirby, A.R. and Morris, V.J., (2010). Molecular basis for the emulsifying properties of sugar beet pectin studied by atomic force microscopy and force spectroscopy. Soft Matter, 6(16): 3957-3969.
[40] Johnson, R. A. (2013). Advanced euclidean geometry. Courier Corporation.
[41] Quevedo, R., Carlos, L.G., Aguilera, J.M. and Cadoche, L., (2002). Description of food surfaces and microstructural changes using fractal image texture analysis. Journal of Food Engineering, 53(4).361-371.
[42] Kerdpiboon, S. and Devahastin, S., (2007). Fractal characterization of some physical properties of a food product under various drying conditions. Drying Technology, 25(1),135-146.