تأثیر پکتین با گروه‌های متوکسیل پایین بر ویژگی‌های ساختاری گویچه‌های چربی خامه سنگین: مطالعه فاز پراکنده مبتنی بر اندازه و مورفولوژی ذرات

نویسندگان
1 دانشجوی دکتری علوم و صنایع غذایی، دانشگاه فردوسی مشهد، ایران.
2 استاد ، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.
3 دانشیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.
4 استاد بازنشسته، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.
چکیده
در این پژوهش تأثیر افزودن پکتین با گروه­های متوکسیل پایین در چهار سطح صفر، 2/0، 4/0 و 6/0 درصد بر ویژگی‏های ساختاری گویچه­های چربی خامه سنگین (45 درصد چربی) بررسی شد. مطالعه ساختاری فاز پراکنده با استفاده از روش اندازه‏گیری توزیع پراکنش ذرات و بررسی مورفولوژی گویچه­ها با کمک تصاویر میکروسکوپ نوری صورت گرفت. نتایج نشان‏دهنده تأثیرگذاری حضور پکتین با گروه­های متوکسیل پایین بر اندازه و الگوی توزیع گویچه­های چربی خامه بود. به طوری که متوسط اندازه حجم- سطح گویچه­های چربی از 28/2 (خامه سنگین فاقد پکتین) به 65/4 میکرومتر(نمونه حاوی 6/0 درصد پکتین با گروه­های متوکسیل پایین)رسید. تصاویر میکروسکوپ نوری نیز بیانگر تغییر مورفولوژی گویچه­ها از فرم کروی و منفرد در محیط به سمت ذرات توده­ای تجمع یافته بود. از سوی دیگر تصاویر پردازش شده نشان‏دهنده افزایش ناهمگونی اندازه ذرات با افزایش سطح پکتین با گروه­های متوکسیل بود. همچنین بعد برخال به عنوان شاخصی برای کمی کردن بی­نظمی بر مبنای تصاویر میکروسکوپی محاسبه شد. نتایج نشان داد بعد برخال با افزایش سطح پکتین با گروه­های متوکسیل پایین در خامه افزایش یافت. در نهایت رابطه­ای با ضریب تبیین بالا میان تغییرات در اندازه ذرات اندازه‏گیری شده با بعد برخال محاسبه شده از روی تصاویر میکروسکوپی حاصل شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of low methoxyl pectin on the structural properties of the fat globules of cream: study of dispersed phase by size and morphology of particles

نویسندگان English

Hooshang Kamelan 1
mostafa mazaheritehrani 2
Mohammad Reza edalatiane 3
Seyed Mohammad Ali Razavi 2
Mohammad hossein Haddad khodaparast 4
1 food science and technology, Ferdowsi university of Mashhad
2 Food science and technology, Ferdowsi university of mashhad
3 Food science and technology,Ferdowsi university of Mashhad
4 food science and technology, Ferdowsi university of Mashhad
چکیده English

In this study, the effect of low methoxyl pectin addition oi the three levels including 0.2, 0.4 and 0.6% on the structural properties of cream with 45% fat globules was investigated. Structural study of the dispersed phase was performed using particle size distribution method and the morphological properties evaluated by optical microscopic images. The results show the effectiveness of low methoxyl pectin on the size distribution of fat globules in the cream. The mean volume-surface of ​​fat globules in pectin-free cream increased from 2.28 to 4.65 μm in the sample with 0.6% low methoxyl pectin. Optical microscopic images demonstrated the morphological of fat globules change from spherical and solitary to the agglomerated form. On the other hand, increasing of low methoxyl pectin levels caused to increase the irregularity of particles size distribution in the images obtained from microscopic observation. Fractal dimension was calculated as an indicator for complexity quantification based on microscopic images. An increase in fractal parameter observed with increasing levels of low methoxyl pectin in the cream. On the other hand, a relationship with high coefficient of determination was observed between the changes in particle size and fractal dimension.

کلیدواژه‌ها English

Cream
Low methoxyl pectin
Particle size distribution
Microscopic imeges
Fractal dimension
[1] Waninge, R., Kalda, E., Paulsson, M., Nylander, T., & Bergenståhl, B. (2004). Cryo-TEM of isolated milk fat globule membrane structures in cream. Physical Chemistry Chemical Physics, 6(7): 1518-1523.
[2] Gallier, S., Gragson, D., Jiménez-Flores, R. and Everett, D., (2010). Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. Journal of Agricultural and Food Chemistry, 58(7): 4250-4257.
[3] BeMiller, J. N., & Whistler, R. L. (Eds.). (2012). Industrial gums: Polysaccharides and Their Derivatives. Academic Press.
[4] De Jong, S., & van de Velde, F. (2007). Charge density of polysaccharide controls microstructure and large deformation properties of mixed gels. Food Hydrocolloids, 21(7): 1172-1187.
[5] Girard, M., Turgeon, S. L., & Gauthier, S. F. (2002). Interbiopolymer complexing between β-lactoglobulin and low-and high-methylated pectin measured by potentiometric titration and ultrafiltration. Food Hydrocolloids, 16(6): 585-591.
[6] Maroziene, A., & De Kruif, C. G. (2000). Interaction of pectin and casein micelles. Food Hydrocolloids, 14(4): 391-394.
[7] Ganzevles, R. A., van Vliet, T., Stuart, M. A. C., & de Jongh, H. H. (2007). Manipulation of adsorption behaviour at liquid interfaces by changing protein–polysaccharide electrostatic interactions. In Food Colloids (pp. 195-208).
[8] Goh, K. K., Teo, A., Sarkar, A., & Singh, H. (2020). Milk protein-polysaccharide interactions. In Milk proteins (pp. 499-535). Academic Press.
[9] Zhao, Q., Zhao, M., Yang, B. and Cui, C., (2009). Effect of xanthan gum on the physical properties and textural characteristics of whipped cream. Food Chemistry, 116(3): 624-628.
[10] Zhao, Q., Zhao, M., Li, J., Yang, B., Su, G., Cui, C., & Jiang, Y. (2009). Effect of hydroxypropyl methylcellulose on the textural and whipping properties of whipped cream. Food Hydrocolloids, 23(8), 2168-2173.
[11] Ziaeifar, L., Shahi, M.L.M., Salami, M. and Askari, G.R., (2018). Effect of casein and inulin addition on physico-chemical characteristics of low fat camel dairy cream. International Journal of Biological Macromolecules, 117, 858-862.
[12] Farahmandfar, R., Asnaashari, M., Taheri, A. and Rad, T.K., (2019). Flow behavior, viscoelastic, textural and foaming characterization of whipped cream: Influence of Lallemantia royleana seed, Salvia macrosiphon seed and carrageenan gums. International Journal of Biological Macromolecules, 121: 609-615.
[13] Ma, Y., & Barbano, D. M. (2003). Effect of temperature of CO2 injection on the pH and freezing point of milks and creams. Journal of Dairy Science, 86(5), 1578-1589.
[14] AOAC (Association of Official Analytical Chemists). (2005). Official methods of analysis of the Association of Analytical Chemists International.
[15] Adriana, B. and Andrzej, B., (2019). Comparison of Physical and Functional Properties of Whipping Cream and Whipping Cream Analogue. Food Scince and Nutrition Research, 2(3): 1-7.
[16] Koocheki, A., Kadkhodaee, R., Mortazavi, S. A., Shahidi, F., & Taherian, A. R. (2009). Influence of Alyssum homolocarpum seed gum on the stability and flow properties of O/W emulsion prepared by high intensity ultrasound. Food Hydrocolloids, 23(8), 2416-2424.
[17] Gonzales, R.C. and Woods, R.E., (2002). Digital image processing.
[18] Ikeda, S., Foegeding, E. A., & Hagiwara, T. (1999). Rheological study on the fractal nature of the protein gel structure. Langmuir, 15(25), 8584-8589.
[19] De Jong, S., & van de Velde, F. (2007). Charge density of polysaccharide controls microstructure and large deformation properties of mixed gels. Food Hydrocolloids, 21(7): 1172-1187.
[20] Helgason, T., Awad, T. S., Kristbergsson, K., McClements, D. J., & Weiss, J. (2009). Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). Journal of Colloid and Interface Science, 334(1): 75-81
[21] Westesen, K., & Siekmann, B. (1997). Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. International Journal of Pharmaceutics, 151(1): 35-45.
[22] Lambert, S., Leconte, N., Blot, M., Rousseau, F., Robert, B., Camier, B., ... & Gésan-Guiziou, G.(2016). The lipid content and microstructure of industrial whole buttermilk and butter serum affect the efficiency of skimming. Food Research International, 83: 121-130.7
[23] Danov, K. D., Petsev, D. N., Denkov, N. D., Borwankar, R. (1993). Pair interaction energy between deformable drops and bubbles. The Journal of Chemical Physics, 99(9): 7179-7189.
[24] Petsev, D. N. (2000). Theoretical analysis of film thickness transition dynamics and coalescence of charged miniemulsion droplets. Langmuir, 16(5): 2093-2100.
[25] Petsev, D. N. (2004). Theory of emulsion flocculation. Emulsions: Structure, Stability and Interactions, 313-350.
[26] Kilpatrick, P. K. (2012). Water-in-crude oil emulsion stabilization: review and unanswered questions. Energy & Fuels, 26(7): 4017-4026.
[27] McClements, D. J. (2015). Food emulsions: principles, practices, and techniques. CRC press
[28] Sun, C. and Gunasekaran, S., (2009). Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids, 23(1): 165-174.
[29] Dickinson, E., (1998). Stability and rheological implications of electrostatic milk protein–polysaccharide interactions. Trends in Food Science & Technology, 9(10): 347-354.
[30] Hirt, S. and Jones, O.G., (2014). Effects of chloride, thiocyanate and sulphate salts on β‐lactoglobulin–pectin associative complexes. International Journal of Food Science & Technology, 49(11): 2391-2398.
[31] Weinbreck, F., De Vries, R., Schrooyen, P. and De Kruif, C.G., (2003). Complex coacervation of whey proteins and gum arabic. Biomacromolecules, 4(2): 293-303.
[32] Mekhloufi, G., Sanchez, C., Renard, D., Guillemin, S. and Hardy, J., (2005). pH-induced structural transitions during complexation and coacervation of β-lactoglobulin and acacia gum. Langmuir, 21(1): 386-394.
[33] Krzeminski, A., Prell, K.A., Weiss, J. and Hinrichs, J., (2014). Environmental response of pectin-stabilized whey protein aggregates. Food Hydrocolloids, 35: 332-340.
[34] Jones, O., Decker, E.A. and McClements, D.J., (2010). Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids, 24(2-3):239-248.
[35] Bayarri, M., Oulahal, N., Degraeve, P. and Gharsallaoui, A., (2014). Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging. Journal of Food Engineering, 131: 18-25.
[36] Eghbal, N., Degraeve, P., Oulahal, N., Yarmand, M.S., Mousavi, M.E. and Gharsallaoui, A., (2017). Low methoxyl pectin/sodium caseinate interactions and composite film formation at neutral pH. Food Hydrocolloids, 69,132-140.
[37] Kobori, T., Matsumoto, A. and Sugiyama, S., (2009). pH-Dependent interaction between sodium caseinate and xanthan gum. Carbohydrate Polymers, 75(4): 719-723.
[38] Seddari, S. and Moulai-Mostefa, N., (2015). Formulation and characterization of double emulsions stabilized by sodium caseinate–xanthan mixtures. effect of ph and biopolymer concentration. Journal of Dispersion Science and Technology, 36(1): 51-60.
[39] Gromer, A., Penfold, R., Gunning, A.P., Kirby, A.R. and Morris, V.J., (2010). Molecular basis for the emulsifying properties of sugar beet pectin studied by atomic force microscopy and force spectroscopy. Soft Matter, 6(16): 3957-3969.
[40] Johnson, R. A. (2013). Advanced euclidean geometry. Courier Corporation.
[41] Quevedo, R., Carlos, L.G., Aguilera, J.M. and Cadoche, L., (2002). Description of food surfaces and microstructural changes using fractal image texture analysis. Journal of Food Engineering, 53(4).361-371.
[42] Kerdpiboon, S. and Devahastin, S., (2007). Fractal characterization of some physical properties of a food product under various drying conditions. Drying Technology, 25(1),135-146.