[1] Burtin, P. (2003). Nutritional value of seaweeds. Electronic journal of Environmental, Agricultural and Food Chemistry, 2(4), 498-503.
[2] Wijesekara, I., Pangestuti, R., & Kim, S. K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 84(1), 14-21.
[3] McHugh, D. J. (2003). A guide to the seaweed industry FAO Fisheries Technical Paper 441. Food and Agriculture Organization of the United Nations, Rome.
[4] Tseng, C. K. (2001). Algal biotechnology industries and research activities in China. Journal of Applied Phycology, 13, 375–380.
[5] Tabarsa, M., You, S., Dabaghian, E. H., & Surayot, U. (2018). Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. Journal of Food and Drug Analysis, 26(2), 599-608.
[6] Masarin, F., Cedeno, F. R. P., Chavez, E. G. S., De Oliveira, L. E., Gelli, V. C., & Monti, R. (2016). Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnology for Biofuels, 9(1), 1-12.
[7] Borazjani, N. J., Tabarsa, M., You, S., & Rezaei, M. (2018). Purification, molecular properties, structural characterization, and immunomodulatory activities of water soluble polysaccharides from Sargassum angustifolium. International Journal of Biological Macromolecules, 109, 793-802.
[8] Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. D. A., Câmara, R. B. G., ... & Rocha, H. A. O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64(1), 21-28.
[9] Miyashita, K., & Takagi, T. (1987). Tocopherol content of Japanese algae and its seasonal variation. Agricultural and Biological Chemistry, 51(11), 3115-3118.
[10] Hosokawa, M., Okada, T., Mikami, N., Konishi, I., & Miyashita, K. (2009). Bio-functions of marine carotenoids. Food Science and Biotechnology, 18(1), 1-11.
[11] Parys, S., Rosenbaum, A., Kehraus, S., Reher, G., Glombitza, K. W., & König, G. M. (2007). Evaluation of quantitative methods for the determination of polyphenols in algal extracts. Journal of Natural Products, 70(12), 1865-1870.
[12] Borazjani, N. J., Tabarsa, M., You, S., & Rezaei, M. (2017). Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. International Journal of Biological Macromolecules, 101, 703-711.
[13] Borazjani, N. J., Tabarsa, M., You, S., & Rezaei, M. (2017). Improved immunomodulatory and antioxidant properties of unrefined fucoidans from Sargassum angustifolium by hydrolysis. Journal of Food Science and Technology, 54(12), 4016-4025.
[14] Rahimi, F., Tabarsa, M., & Rezaei, M. (2016). Ulvan from green algae Ulva intestinalis: optimization of ultrasound-assisted extraction and antioxidant activity. Journal of Applied Phycology, 28(5), 2979-2990.
[15] DeFronzo, R. A., & Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 32(suppl 2), S157-S163.
[16] Sugiwati, S., Kardono, L., & Bintang, M. (2006). a-Glucosidase inhibitory activity and hypoglycemic effect of Phaleria macrocarpa fruit pericarp extracts by oral administration to rats. Journal of Applied Sciences, 6(10), 2312-2316.
[17] Wang, Y., Wang, J., Zhao, Y., Hu, S., Shi, D., & Xue, C. (2016). Fucoidan from sea cucumber Cucumaria frondosa exhibits anti-hyperglycemic effects in insulin resistant mice via activating the PI3K/PKB pathway and GLUT4. Journal of Bioscience and Bioengineering, 121(1), 36-42.
[18] Koh, H. S. A., Lu, J., & Zhou, W. (2020). Structural dependence of sulfated polysaccharide for diabetes management: Fucoidan from Undaria pinnatifida inhibiting α-glucosidase more strongly than α-amylase and amyloglucosidase. Frontiers in Pharmacology, 11, 831.
[19] Hu, S., Xia, G., Wang, J., Wang, Y., Li, Z., & Xue, C. (2014). Fucoidan from sea cucumber protects against high-fat high-sucrose diet-induced hyperglycaemia and insulin resistance in mice. Journal of Functional Foods, 10, 128-138.
[20] Kolsi, R. B. A., Fakhfakh, J., Sassi, S., Elleuch, M., & Gargouri, L. (2018). Physico-chemical characterization and beneficial effects of seaweed sulfated polysaccharide against oxydatif and cellular damages caused by alloxan in diabetic rats. International Journal of Biological Macromolecules, 117, 407-417.
[21] Zarkami, R., & Khazaie, H. (2020). Assessment of habitat suitability of watermilfoil (Myriophyllum spicatum L.) in some aquatic ecosystems of Mazandaran and Guilan provinces. Journal of Plant Research (Iranian Journal of Biology), 33(3), 705-717.
[22] Alavi, M., Tabarsa, M., You, S., & Gavlighi, H. A. (2020). Structural characteristics, molecular properties and immunostimulatory effects of sulfated polysaccharide from freshwater Myriophyllum spicatum L. International Journal of Biological Macromolecules, 153, 951-961.
[23] Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
[24] Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
[25] Apostolidis, E., Kwon, Y. I., & Shetty, K. (2007). Inhibitory potential of herb, fruit, and
fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Food Science and Emerging Technologies, 8(1), 46–54.
[26] Kumar, S. P., Kekuda, T. P., Vinayaka, K. S., & Sudharshan, S. J. (2009). Anthelmintic and antioxidant efficacy of two macrolichens of Ramalinaceae. Pharmacognosy Journal, 1(4), 238-242.
[27] Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211-219.
[28] Chandini, S. K., Ganesan, P., & Bhaskar, N. (2008). In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry, 107(2), 707-713.
[29] Luo, H., Wang, B., Yu, C., Qu, Y., & Su, C. (2010). Evaluation of antioxidant activities of five selected brown seaweeds from China. Journal of Medicinal Plants Research, 4(23), 2557-2565.
[30] Ye, H., Zhou, C., Sun, Y., Zhang, X., Liu, J., Hu, Q., & Zeng, X. (2009). Antioxidant activities in vitro of ethanol extract from brown seaweed Sargassum pallidum. European Food Research and Technology, 230(1), 101-109.
[31] Brayer, G. D., Sidhu, G., Maurus, R., Rydberg, E. H., Braun, C., Wang, Y., ... & Withers, S. G. (2000). Subsite mapping of the human pancreatic α-amylase active site through structural, kinetic, and mutagenesis techniques. Biochemistry, 39(16), 4778-4791
[32] de Melo, E. B., da Silveira Gomes, A., & Carvalho, I. (2006). α-and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron, 62(44), 10277-10302.
[33] Yuan, Y., & Macquarrie D. (2015). Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydrate Polymers,129, 101-107.
[34] Hou, Y,, Wang, J., Jin, W., Zhang, H., & Zhang Q. (2012). Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights. Carbohydrate Polymers, 87(1), 153-9.
[35] Kim, K. T., Rioux, L. E., & Turgeon, S. L. (2014). Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry, 98, 27-33.
[36] Nahoum, V., Roux, G., Anton, V., Rougé, P., Puigserver, A., Bischoff, H., ... & Payan, F. (2000). Crystal structures of human pancreatic α-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochemical Journal, 346(1), 201-208.
[37] Maki, K. C., Galant, R., Samuel, P., Tesser, J., Witchger, M. S., Ribaya-Mercado, J. D., ... & Geohas, J. (2007). Effects of consuming foods containing oat β-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure. European Journal of Clinical Nutrition, 61(6), 786-795.
[38] L. Zhang, S. Hogan, J. Li, S. Sun, C. Canning, S.J. Zheng, K. Zhou Grape skin extract inhibits mammalian intestinal α-glucosidase activity and suppresses postprandial glycemic response in streptozocin-treated mice Food Chemistry, 126 (2) (2011), pp. 466-470.