[1] Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., Bugarski, B. 2011. An overview of encapsulation technologies for food applications. Procedia Food Science, 1: 1806-1815.
[2] McClements, D. J. 2017. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Advances in Colloid and Interface Science, 240: 31-59.
[3] McClements, D. J. 2018. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Advances in Colloid and Interface Science, 253: 1-22.
[4] Kharat, M., McClements, D. J. 2019. Fabrication and characterization of nanostructured lipid carriers (NLC) using a plant-based emulsifier: Quillaja saponin. Food Research International, 126: 108601.
[5] Steiner, B. M., McClements, D. J., Davidov-Pardo, G. 2018. Encapsulation systems for lutein: A review. Trends in Food Science & Technology, 82: 71-81.
[6] Fathi, M., Mozafari, M. R., Mohebbi, M. 2012. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology, 23(1): 13-27.
[7] Mishra, V., Bansal, K. K., Verma, A., Yadav, N., Thakur, S., Sudhakar, K., Rosenholm, J. M. 2018. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics, 10(4): 1-21.
[8] Tamjidi, F., Shahedi, M., Varshosaz, J., Nasirpour, A. 2013. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Science & Emerging Technologies, 19: 29-43.
[9] Salvi, V. R., Pawar, P. 2019. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. Journal of Drug Delivery Science and Technology, 51: 255-267.
[10] Huang, J., Wang, Q., Li, T., Xia, N., Xia, Q. 2017. Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: Preparation and in vitro characterization studies. Journal of Food Engineering, 215: 1-12.
[11] Babazadeh, A., Ghanbarzadeh, B., Hamishehkar, H. 2016. Novel nanostructured lipid carriers as a promising food grade delivery system for rutin. Journal of Functional Foods, 26: 167-175.
[12] Kharat, M., McClements, D. J. 2019. Recent advances in colloidal delivery systems for nutraceuticals: A case study – Delivery by Design of curcumin. Journal of Colloid and Interface Science, 557: 506-518.
[13] Rabelo, R. S., Oliveira, I. F., da Silva, V. M., Prata, A. S., Hubinger, M. D. 2018. Chitosan coated nanostructured lipid carriers (NLCs) for loading Vitamin D: A physical stability study. International Journal of Biological Macromolecules, 119: 902-912.
[14] Bashiri, S., Ghanbarzadeh, B., Ayaseh, A., Dehghannya, J., Ehsani, A. 2020. Preparation and characterization of chitosan-coated nanostructured lipid carriers (CH-NLC) containing cinnamon essential oil for enriching milk and anti-oxidant activity. LWT, 119: 108836.
[15] Ali, M. E., Lamprecht, A. 2017. Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles. International Journal of Pharmaceutics, 516(1): 170-177.
[16] Salminen, H., Ankenbrand, J., Zeeb, B., Badolato Bonisch, G., Schafer, C., Kohlus, R., Weiss, J. 2019. Influence of spray drying on the stability of food-grade solid lipid nanoparticles. Food Research International, 119: 741-750.
[17] Campos, D. A., Madureira, A. R., Sarmento, B., Pintado, M. M., Gomes, A. M. 2017. Technological stability of solid lipid nanoparticles loaded with phenolic compounds: Drying process and stability along storage. Journal of Food Engineering, 196: 1-10.
[18] Schwarz, C., Mehnert, W. 1997. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). International Journal of Pharmaceutics, 157(2): 171-179.
[19] Shahgaldian, P., Gualbert, J., Aı̈ssa, K. s., Coleman, A. W. 2003. A study of the freeze-drying conditions of calixarene based solid lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 55(2): 181-184.
[20] Zimmermann, E., Müller, R. H., Mäder, K. 2000. Influence of different parameters on reconstitution of lyophilized SLN. International Journal of Pharmaceutics, 196(2): 211-213.
[21] Olufemi, B., G.O, P., Towobola, O., Olanrewaju, A. 2012. Operational characterization of a spray dryer for drying water, caustic soda and sodium chloride solutions. ARPN Journal of Engineering and Applied Sciences, 7(2): 222-227.
[22] Selvamuthukumaran, M., Tranchant, C., Shi, J., Spraying drying concept, application, and its recent advances in food processing in: M. Selvamuthukumaran (Ed.) Handbook on Spray Drying Applications for Food Industries, CRC Press, Boca Raton, 2019.
[23] Haque, M. A., Timilsena, Y. P., Adhikari1, B., Spray drying, in: P.K. Nema, B.P. Kaur, A.S. Mujumdar (Eds.) Drying Technologies for Foods: Fundamentals & Applications, New India Publishing Agency, India, 2015, pp. 79-106.
[24] Fang, Z., Bhandari, B., Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation, in: N. Garti, D.J. McClements (Eds.) Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals, Woodhead Publishing2012, pp. 73-109.
[25] Anandharamakrishnan, C., Ishwarya, P., Spray Drying Techniques for Food Ingredient Encapsulation, John Wiley & Sons, Ltd2015.
[26] Bayram, Ö. A., Bayram, M., Tekin, A. R. 2005. Spray drying of sumac flavour using sodium chloride, sucrose, glucose and starch as carriers. Journal of Food Engineering, 69(2): 253-260.
[27] Chávez, B. E., Ledeboer, A. M. 2007. Drying of Probiotics: Optimization of Formulation and Process to Enhance Storage Survival. Drying Technology, 25(7-8): 1193-1201.
[28] Freitas, C., Müller, R. H. 1998. Spray-drying of solid lipid nanoparticles (SLNTM). European Journal of Pharmaceutics and Biopharmaceutics, 46(2): 145-151.
[29] Yue-Xing, C., Fei-Fei, Y., Han, W., Tao-Tao, F., Chun-Yu, L., Li-Hui, Q., Yong-Hong, L. 2018. The effect of l -leucine on the stabilization and inhalability of spray-dried solid lipid nanoparticles for pulmonary drug delivery. Journal of Drug Delivery Science and Technology, 46: 474-481.
[30] Wang, T., Hu, Q., Zhou, M., Xia, Y., Nieh, M. P., Luo, Y. 2016. Development of "all natural" layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology. European Journal of Pharmaceutics and Biopharmaceutics, 107: 273-285.
[31] Gaspar, D. P., Serra, C., Lino, P. R., Goncalves, L., Taboada, P., Remunan-Lopez, C., Almeida, A. J. 2017. Microencapsulated SLN: An innovative strategy for pulmonary protein delivery. International Journal of Pharmaceutics, 516(1-2): 231-246.
[32] DeMan, J. M., Principles of Food Chemistry, Springer1999.
[33] Oberoi, D. P. S., Sogi, D. S. 2015. Effect of drying methods and maltodextrin concentration on pigment content of watermelon juice powder. Journal of Food Engineering, 165: 172-178.
[34] Caliskan, G., Nur Dirim, S. 2013. The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food and Bioproducts Processing, 91(4): 539-548.
[35] Fongin, S., Alvino Granados, A. E., Harnkarnsujarit, N., Hagura, Y., Kawai, K. 2019. Effects of maltodextrin and pulp on the water sorption, glass transition, and caking properties of freeze-dried mango powder. Journal of Food Engineering, 247: 95-103.
[36] Pai, D. A., Vangala, V. R., Ng, J. W., Ng, W. K., Tan, R. B. H. 2015. Resistant maltodextrin as a shell material for encapsulation of naringin: Production and physicochemical characterization. Journal of Food Engineering, 161: 68-74.
[37] Vélez-Erazo, E. M., Consoli, L., Hubinger, M. D. 2020. Spray drying of mono- and double-layer emulsions of PUFA-rich vegetable oil homogenized by ultrasound. Drying Technology: 1-14.
[38] Liu, X.-D., Atarashi, T., Furuta, T., Yoshii, H., Aishima, S., Ohkawara, M., Linko, P. 2001. Microencapsulation of emulsified hydrophobic flavors by spray drying. Drying Technology, 19(7): 1361-1374.
[39] Luo, Y., Teng, Z., Li, Y., Wang, Q. 2015. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, muco adhesion and cellular uptake Carbohydrate Polymers, 122 221-229.
[40] Chindapan, N., Niamnuy, C., Devahastin, S. 2018. Physical properties, morphology and saltiness of salt particles as affected by spray drying conditions and potassium chloride substitution. Powder Technology, 326: 265-271.
[41] Ahmad, Z., Nurul Nadhirah, R., Rozyanty, A. R., Nawawi, W. I., B Norhanani, A. 2016. Crystallinity, Tapping and Bulk Density of Microcrystalline Cellulose (MCC) Isolated from Rice Husk (RH). Applied Mechanics and Materials, 835: 272-276.
[42] Ezzati Nazhad Dolatabadi, J., Hamishehkar, H., Valizadeh, H. 2015. Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: solid-state characterization and aerosol dispersion performance. Drug Delivery and Industrial Pharmacy, 41(9): 1431-1437.
[43] Mozaffar, S., Radi, M., Amiri, S., McClements, D. J. 2020. A new approach for drying of nanostructured lipid carriers (NLC) by spray-drying and using sodium chloride as the excipient. Journal of Drug Delivery Science and Technology: 102212.
[44] Hadinoto, K., Phanapavudhikul, P., Kewu, Z., Tan, R. B. 2007. Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. International Journal of Pharmaceutics, 333(1-2): 187-198.
[45] Vehring, R. 2008. Pharmaceutical particle engineering via spray drying. Pharmaceutical Research, 25(5): 999-1022.
[46] Nemati, E., Mokhtarzadeh, A., Panahi-Azar, V., Mohammadi, A., Hamishehkar, H., Mesgari-Abbasi, M., Ezzati Nazhad Dolatabadi, J., de la Guardia, M. 2019. Ethambutol-Loaded Solid Lipid Nanoparticles as Dry Powder Inhalable Formulation for Tuberculosis Therapy. AAPS PharmSciTech, 20(3): 120.
[47] Grandison, A. S., Lewis, M. J., Separation processes - An overview, in: A.S. Grandison, M.J. Lewis (Eds.) Separation Processes in the Food and Biotechnology Industries, Woodhead Publishing1996, pp. 1-16.
[48] Fazaeli, M., Emam-Djomeh, Z., Kalbasi-Ashtari, A., Omid, M. 2012. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90: 667-675.
[49] Saw, H. Y., Davies, C., Paterson, A., Jones, J., The influence of particle size distribution and tapping on the bulk density of milled lactose powders, ChemecaBrisbane, Australia, 2013.
[50] Lewis, M. J., Solids separation processes, in: A.S. Grandison, M.J. Lewis (Eds.) Separation Processes in the Food and Biotechnology Industries, Woodhead Publishing1996, pp. 243-286.
[51] Zatloukal, Z., Šklubalová, Z. 2008. Drained Angle of Free-Flowable Powders. Particulate Science and Technology, 26(6): 595-607.