مقایسه و پیش بینی تغییرات دمای همبرگر در طی فرآیند انجماد با استفاده از دو روش مختلف مدل سازی عددی

نویسندگان
1 استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران.
2 استادیار، گروه مهندسی ‌علوم و صنایع غذایی، دانشکده فنی و منابع طبیعی تویسرکان، دانشگاه بوعلی سینا، همدان، ایران
چکیده
همبرگر یکی از پر مصرف ترین محصولات گوشتی در سراسر جهان است. ماندگاری این محصول نسبتاً کوتاه است و بنابراین معمولاً از فرایند انجماد برای کاهش فعالیت آبی و جلوگیری از تکثیر میکروارگانیسم استفاده می شود. پیش بینی دقیق دما در هنگام انجماد در طراحی روشهای سرمایش، بهینه سازی و جلوگیری از افت کیفیت محصول مهم می باشد. مدل های پیش بینی زمان انجماد از معادلات تحلیلی نسبتاً ساده (مبتنی بر تعدادی مفروضات) گرفته تا روش های حل عددی متنوعی که به زمان محاسبات زیادی و کامپیوتر پیچیده نیاز دارند، متغیر است. در این تحقیق، نخست خصوصیات حرارتی همبرگر، از جمله کسر یخ، هدایت حرارتی و گرمای ویژه با مدل های ریاضی تعیین شدند و سپس فرایند انجماد همبرگر با دو روش عددی مختلف (تفاضل محدود و اجزاء محدود) بررسی شد. نتایج حاصل با داده های تجربی مقایسه و مشخص گردید که اگرچه هر دو مدل می توانند به طور منطقی درجه حرارت همبرگر را هنگام انجماد پیش بینی کنند، اما مدل اجزاء محدود از توانایی بیشتری در پیش بینی دما نسبت به مدل تفاضل محدود برخوردار است. این مطالعه نشان داد که استفاده از بسته های CFD مانند نرم افزار COMSOL می تواند به عنوان گزینه مناسبی برای تخمین زمان انجماد فرآورده های گوشتی در نظر گرفته شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of two different numerical modeling for predicting the temperature of hamburger patty during freezing process.

نویسندگان English

mohsen Dalvi esfahan 1
Amir Daraei Garmakhany 2
1 Assistant professor, Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, Jahrom, Iran.
2 Assistant professor, Department of Food Science and Technology, Tuyserkan Faculty of Engineering & Natural Resources, Bu-Ali Sina University, Hamedan, Iran.
چکیده English

Hamburgers are one of the most widely consumed meat products in the world. The shelf life of this product is rather short, therefore the freezing process is commonly used to reduce water activity and prevent the growth of microorganisms. Accurate temperature prediction during freezing is important in designing optimum cooling procedures and to avoid quality deterioration. Models for predicting freezing times range from relatively simple analytical equations to the more complicated numerical methods which require a lot of computing time and a sophisticated computer. In this research, thermal properties of hamburger, including ice fraction, thermal conductivity and specific heat were determined mathematically and then the freezing process of hamburger patty was investigated by two different numerical models (finite difference& finite element). The results were compared with experimental data and it was found that although both two models could reasonably forecast the temperature of hamburger patties during freezing, the finite element model demonstrated better goodness of fit than finite difference model. This study shows that the use of CFD packages such as COMSOL software can be considered as a suitable option for the estimation of freezing time of meat products.

کلیدواژه‌ها English

Finite element
Heat Transfer
Freezing
Finite Difference
Hamburger
[1] Hajimohammadi, B., Dehghani, A., Moghaddam-Ahmadi, M., Eslami, G., Oryan, A., Yasini-Ardakani, S. A., Zohourtabar, A., and Mirzaei, F. 2014. Isolation of Sarcocystis Hirsuta from Traditional Hamburger of Iran. Journal of Isfahan Medical School, 32 (9273): 79-85.
[2] Uyar, R., and Erdogdu, F. 2012. Numerical Evaluation of Spherical Geometry Approximation for Heating and Cooling of Irregular Shaped Food Products. Journal of Food Science, 77(7): E166-E175.
[3] Fatemi, H. 2007. Principle of food preservation technology. Sahami Entehshar Publisher.
[4] Le-Bail, A., Chapleau, N., Anton-De Lamballerie, M., and Vignolle, M. 2008. Evaluation of the mean ice ratio as a function of temperature in a heterogeneous food: Application to the determination of the target temperature at the end of freezing. International Journal of Refrigeration, 31(5): 816-821.
[5] Mittal, G. S., Hanenian, R., and Mallikarjunan, P. 1993. Evaluation of freezing time prediction models for meat patties. Canadian Agricultural Engineering, 35(1): 75-81.
[6] Delgado, A. E., and Sun, D.W. 2001. Heat and mass transfer models for predicting freezing processes- a review. Journal of Food Engineering, 47(3): 157-174.
[7] Moraga, N. O., and Salinas, C. H. 1999. Numerical model for heat and fluid flow in food freezing. Numerical Heat Transfer, Part A: Applications, 35(5): 495-517.
[8] Sheen, S., and Hayakawa, K. 1990. Finite difference analysis for the freezing and thawing of an irregular food with volumetric change. In Spiess W.E.L. & H. Schubert (Eds.), International Congress on Engineering and Food (Fifth), vol. 2 (pp. 426-441). Cologne, Germany: Elsevier.
[9] Sanz, P. D., de Elvira, C., Martino, M., Zaritzky, N., Otero, L., and Carrasco, J. A. 1999. Freezing rate simulation as an aid to reducing crystallization damage in foods. Meat Science, 52(3): 275-278.
[10] Tocci, A. M., and Mascheroni, R. H. 1995. Numerical models for the simulation of the simultaneous heat and mass transfer during food freezing and storage. International Communications in Heat and Mass Transfer, 22(2): 251-260.
[11] Zilio, C., Righetti, G., Pernigotto, G., and Longo, G. A. 2018. Analysis of the freezing time of chicken breast finite cylinders. International Journal of Refrigeration, 95: 38-50.
[12] Dima, J. B., Santos, M. V., Baron, P. J., Califano, A., and Zaritzky, N. E. 2014. Experimental study and numerical modeling of the freezing process of marine products. Food and Bioproducts Processing, 92 (1): 54-66.
[13] Pham, Q. T., Trujillo, F.J., and Mc Phail, N. 2009. Finite element model for beef chilling using CFD-generated heat transfer coefficients. International Journal of Refrigeration, 32(1): 102-113.
[14] Kuffi, K. D., Defraeye, T., Nicolai, B. M., De Smet, S., Geeraerd, A., and Verboven, P. 2016. CFD modeling of industrial cooling of large beef carcasses. International Journal of Refrigeration, 69: 324-339.
[15] Kiani, H., Zhang, Z., and Sun, D. W. 2015. Experimental analysis and modeling of ultrasound assisted freezing of potato spheres. Ultrasonics Sonochemistry, 26: 321-331.
[16] Pham, Q. T. 2012. Mathematical Modeling of Freezing Processes. Handbook of Frozen Food Processing and Packaging. D. W. Sun. Boca Raton, CRC Press.
[17] Institute of Standards and Industrial Research of Iran (ISIRI). Standard No. 2304. Raw frozen hamburger - Specifications and test methods. 2016;4th. Revision.
[18] Valentas, K. J., Rotstein, E., and Singh, R.P. 1997. Handbook of food engineering practice. Boca Raton, Fla., CRC Press.
[19] Van der Sman, R. G. M., and Boer, E. 2005. Predicting the initial freezing point and water activity of meat products from composition data. Journal of Food Engineering, 66(4), 469-475.
[20] Hamdami, N., Monteau, J.Y., and Le-Bail, A. 2004. Heat and mass transfer in par-baked bread during freezing. Food Research International, 37(5): 477-488.
[221] Dalvi, M., and Hamdami, N. 2010. Numerical Heat Transfer Modeling in Ultrafilterated White Cheese. Journal of Food Research, 20(2): 45-60.
[22] Schwartzberg, H., Singh, R.P., and Sarkar, A. 2007. CHAPTER 3 Freezing and thawing of foods – computation methods and thermal properties correlation. Heat Transfer in Food Processing: Recent Developments and Applications. S. Yanniotis and B. Sundén, WIT Press: 61-99.
[23] Dalvi-Isfahan, M., Hamdami, N., Xanthakis, E., and Le-Bail, A. 2017. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. Journal of Food Engineering, 195: 222-234.
[24] Tavman, S., Kumcuoglu, S., and Gaukel, V. 2007. Apparent Specific Heat Capacity of Chilled and Frozen Meat Products. International Journal of Food Properties, 10(1): 103-112.
[25] Xanthakis, E., Havet, M., Chevallier, S., Abadie, J., and Le-Bail, A. 2013. Effect of static electric field on ice crystal size reduction during freezing of pork meat. Innovative Food Science and Emerging Technologies, 20: 115-120.