[1] Makroo, H. A., Rastogi, N. K., & Srivastava, B. (2017). Enzyme inactivation of tomato juice by ohmic heating and its effects on physico‐chemical characteristics of concentrated tomato paste. Journal of Food Process Engineering, 40(3), e12464.
[2] Belović, M., Pajić-Lijaković, I., Torbica, A., Mastilović, J., & Pećinar, I. (2016). The influence of concentration and temperature on the viscoelastic properties of tomato pomace dispersions. Journal of Food Hydrocolloids, 61, 617-624.
[3] Lenucci, M. S., Durante, M., Anna, M., Dalessandro, G., & Piro, G. (2013). Possible use of the carbohydrates present in tomato pomace and in byproducts of the supercritical carbon dioxide lycopene extraction process as biomass for bioethanol production. Journal of agricultural and food chemistry, 61(15), 3683-3692.
[4] Bayod, E., & Tornberg, E. (2011). Microstructure of highly concentrated tomato suspensions on homogenisation and subsequent shearing. Journal of Food Research International, 44, 755-764
[5] Lopez Sanchez, P., Nijsse, J., Blonk, H. C., Bialek, L., Schumm, S., & Langton, M. (2011). Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. Journal of the Science of Food and Agriculture, 91, 207-217.
[6] Torbica, A., Belović, M., Mastilović, J., Kevrešan, Ž., Pestorić, M., Škrobot, D., & Hadnađev, T. D. (2016). Nutritional, rheological, and sensory evaluation of tomato ketchup with increased content of natural fibres made from fresh tomato pomace. Journal of Food and Bioproducts Processing, 98, 299-309.
[7] Moelants, K. R., Cardinaels, R., Jolie, R. P., Verrijssen, T. A., Van Buggenhout, S., Van Loey, A. M., ... & Hendrickx, M. E. (2014a). Rheology of concentrated tomato-derived suspensions: effects of particle characteristics. Journal of Food and bioprocess technology, 7(1), 248-264.
[8] Boubidi, F., & Boutebba, A. (2013). Effects of heat treatments on quality parameters and the natural antioxidants of triple concentrated tomato paste. Journal of Annals Food Science and Technology, 14, 5-12.
[9] De Sio, F., Dipollina, G., Villari, G., Loiudice, R., Laratta, B., & Castaldo, D. (1995). Thermal resistance of pectin methylesterase in tomato juice. Journal of Food Chemistry, 52(2), 135-138.
[10] Laratta, B., Fasanaro, G., De Sio, F., Castaldo, D., Palmieri, A., Giovane, A., & Servillo, L. (1995). Thermal inactivation of pectin methylesterase in tomato puree: implications on cloud stability. of Journal Process Biochemistry, 30(3), 251-259.
[11] Lopez, P., Vercet, A., Sanchez, A. C., & Burgos, J. (1998). Inactivation of tomato pectic enzymes by manothermosonication. Journal of Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 207(3), 249-252.
[12] Svelander, C. A., Tibäck, E. A., Ahrné, L. M., Langton, M. I., Svanberg, U. S., & Alminger, M. A. (2010). Processing of tomato: impact on in vitro bioaccessibility of lycopene and textural properties. Journal of the Science of Food and Agriculture, 90(10), 1665-1672.
[13] Yıldız, H., & Baysal, T. (2006). Effects of alternative current heating treatment on Aspergillus niger, pectin methylesterase and pectin content in tomato. Journal of food engineering, 75(3), 327-332.
[14] Hsu, K. C. (2008). Evaluation of processing qualities of tomato juice induced by thermal and pressure processing. Journal of LWT-Food Science and Technology, 41(3), 450-459.
[15] Anthon, G., Sekine, E., Watanabe, Y., & Barrett, D. M. (2002). Thermal inactivation of pectin methylesterase, polygalacturonase, and peroxidase in tomato juice. Journal of agricultural and food chemistry, 50(21), 6153-6159.
[16] Chiang, G. H., Melachouris, N., Palag, A. N., & Wedral, E. R. (1995). U.S. Patent No. 5,436,022. Washington, DC: U.S. Patent and Trademark Office.
[17] Ahmed, J., Shivhare, U., & K. S. Sandhu, K. S. (2002). Thermal degradation kinetics of carotenoids and visual color of papaya puree. Journal of Food Science, 67(7), 2692–2695.
[18] Barreiro, J. A., Milano, M., & Sandoval, A. J. (1997). Kinetics of color change of double concentrated tomato paste during thermal treatment. Journal of Food Engineering, 33(2), 359–371.
[19] Anonymous. 1976. Color and Color Related Properties, Instruction Manual. Gardner Laboratories, Maryland, USA.
[20] Owino, W. O., Gemma, H., Hutchnison, M. J., Githiga, R. W., & Ambuko, J. (2012). Effect of maturity stage and variety on the efficacy of 1-mcp treatments in mango fruits. Journal of Food Process Engineering, 34(2), 491-
[21] Anthon, G. E., & Barrett, D. M. (2012). Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Journal of Food Chemistry, 132(2), 915-920.
[22] Vercet, A., Sánchez, C., Burgos, J., Montañés, L., & Buesa, P. L. (2002). The effects of manothermosonication on tomato pectic enzymes and tomato paste rheological properties. Journal of Food Engineering, 53(3), 273-278.
[23] XU, S. Y., Shoemaker, C. F., & Luh, B. S. (1986). Effect of break temperature on rheological properties and microstructure of tomato juices and pastes. Journal of food science, 51(2), 399-402.
[24] Rodrigo D., Loey, A. V., & Hendrickx, M. (2007). Combined thermal and high pressure color degradation of tomato puree and strawberry juice. Journal of Food Engineering, 79, 553–560.
[25] Hackett, M. M., Lee, J. H., Francis, D., & Schwartz, S. J. (2004). Thermal stability and isomerization of lycopene in tomato oleoresins from different varieties. Journal of Food Science, 69(7), 536–541.
[26] Chutintrasri, B., & Noomhorm, A. (2007). Color degradation kinetics of pineapple puree during thermal processing. Journal of LWT- Food Science and Technology, 40, 300–30.